Zeta Rev HEi FC

36÷96 kW

General

Chillers with DC inverter-controlled brushless compressor. Free-cooling with independent section, No-Glycol option

Configurations

NG: no-glycol execution /LN: low-noise unit

Strengths

- ▶ Patented free cooling system
- Chiller with low refrigerant charge
- ► Hydraulic module tank (option) to guarantee a minimum volume of water in the system
- ▶ BlueThink advanced control with integrated web server. Multilogic function and Blueye® supervision system. (options)
- ► Flowzer: inverter driven pumps (options)

Application and operating principle Zeta Rev HEi FC	7
Product description	9
Versions	11
Options	11
Description of accessories Refrigerant circuit accessories Fan accessories Hydraulic circuit accessories Electrical accessories Other accessories Flowzer options	12 14 15 16 22 24
Technical specifications Zeta Rev HEi FC Zeta Rev HEi FC/NG	38 38 39
Ecodesign	40
Electrical specifications	44
Hydraulic modules	44
User-side exchanger flow rate fields	44
Operating limits	46
Noise levels	47
Installation advice Water characteristics Glycol mixtures Minimum water content in the system Installation site Installations that require the use of treated coils Aeraulic head losses and options available for the ventilating section	48 48 49 50 51 52
Dimensional diagrams	53

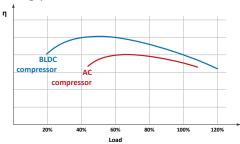
EFFICIENCY IS SYNONYMOUS WITH INVERTER

The global push to increase the energy efficiency of buildings and systems is driving the development of all technologies that can make a contribution.

In the HVAC sector, this is realized in the development of technologies that enable the maximum energy saving to be obtained in partial load conditions.

The technology that, more than any other technology, enables considerable efficiency improvements in operation at partial loads is inverter technology applied to compressors. This allows the maximum efficiency to be obtained while maintaining the same operating limits of conventional units.

The more variable the load (as in comfort applications), or the longer the operating cycle where source temperatures are variable (as for combined air-water units in industrial applications), the stronger this advantage becomes.

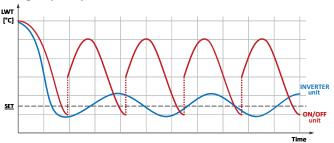

The need to comply with the energy efficiency targets set by environmentally friendly design will increasingly push the adoption of units equipped with this technology.

Zeta Rev HEi FC

All the units use a hermetic orbiting spiral scroll compressor with brushless motor controlled by a DC inverter. In the models with two or three compressors, this is connected in tandem or trio with hermetic scroll compressors with asynchronous ON/OFF motor.

In comparison to a compressor with asynchronous motor, a compressor with brushless motor (BLDC motor or PMDC motor) has a rotor containing permanent magnets. These make it intrinsically more efficient thanks to the magnetization energy saving of the rotor and to the fact that there are no rubbing parts.

It can also be seen that, since it is specially built to also operate at low speeds, a BLDC compressor has a wider speed adjustment range than a conventional compressor controlled through an AC inverter.


The inverter-controlled compressor can modulate its speed between about 30 and 105 rps.

Considering the efficiency performance of the brushless motor and the overall efficiency performance of the unit, we find that the unit can express its best efficiency performance level at a speed of 90rps.

Therefore, if required, the unit can develop a capacity higher than the nominal capacity with a slightly lower efficiency level. This capacity is particularly interesting in all situations where it is necessary to satisfy short load peaks. Il compressore BLDC non può essere alimentato direttamente, ma deve essere pilotato attraverso un inverter DC che si occupa della gestione delle rampe di accelerazione e di rallentamento, della gestione del suo avviamento senza spunti e di garantire che il compressore operi sempre in condizioni di sicurezza e stando all'interno dei limiti operativi ammessi. This is essential to preserve the efficiency and reliability of the compressor.

Management of a variable capacity machine

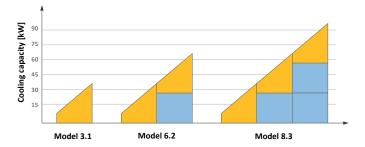
In addition to the advantage of greater efficiency, the use of a modulating compressor allows the unit to adapt its cooling capacity to the actual heat load to be met.

Normally, the capacity supplied by the unit exceeds the capacity actually required by the system.

In this condition, a machine with ON/OFF compressors will go through a sequence of ON and OFF cycles in an attempt to keep the water temperature within a set differential.

At each subsequent restart, the refrigerant circuit must find the best balance condition and this phase requires a time that ranges from 1 to 3 minutes during which the unit undergoes irreversible energy losses and has a very low energy efficiency.

In a different way, a machine with inverter-controlled compressor will be able to modulate its cooling capacity and adapt to the load.


Through control of the water outlet temperature and its variation over time, the controller of the unit can determine the capacity level required by the system and therefore adjust the speed of the compressor through an analogue signal supplied to the inverter.

The further away the water outlet temperature is from the set point, the greater the capacity that will be required by the controller. As the outlet temperature approaches the set point temperature, the controller will slow down the compressor and limit temperature oscillation as much as possible.

In this way, as far as possible, the controller keeps the compressor always running in modulating mode, thereby avoiding the irreversible energy losses of the starts and exploiting the condition in which the brushless compressor works with its maximum efficiency.

In this way, as far as possible, the controller keeps the compressor always running in modulating mode, thereby avoiding the irreversible energy losses of the starts and exploiting the condition in which the brushless compressor works with its maximum efficiency.

For multi-compressor models, the flexibility of multiscroll units is added to the modulation precision of the inverter-controlled compressor.

The controller uses the ON/OFF compressors to come near the required load, and modulates the capacity of the inverter compressor in order to carry out fine control.

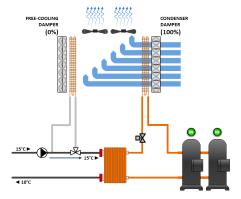
APPLICATION AND OPERATING PRINCIPLE

Free cooling units meet growing demands for energy savings, since they have been designed to reduce the operating costs of refrigerating machines that work to serve process applications or in the IT field.

A strong point of our free cooling units is certainly the control system that allows maximum use to be made of the free resource, consisting of outside air, so minimizing the energy used by the compressors. The controller of the unit activates the chiller section and the free cooling section, also in combined mode, based on the actual external air temperatures, the set point and the required load level.

The free cooling section is hydraulically in series with the evaporator and this allows a benefit to be obtained from its activation even when the outside air temperature is sufficient to carry out only a pre-cooling of the water. The missing amount of capacity, in any case lower than the total required, will be provided by the compressors.

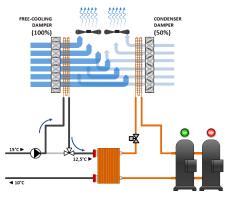
As the outside air temperature goes down, the amount of capacity that the free cooling section will be able to transfer to the water will gradually increase. Consequently, the amount of capacity that will have to be covered by the compressors will always be lower.


When the TFT (Total Free-cooling Temperature) is reached, the free cooling section will be able to fully meet the cooling capacity requirement and therefore the compressors can be switched off. In this condition, the unit will be able to provide the system with a cooling capacity equal to that required at design conditions, but with current drawn by the fans alone.

How the unit behaves in the various scenarios is explained briefly below.

ZETA REV HEI FC

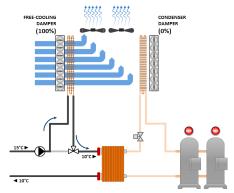
Chiller only mode


When the ambient temperature is higher than the temperature of the water returning from the system, all the required cooling capacity must be produced by the compressors.

In this mode, the damper that controls the air flow rate at the free cooling coil is fully closed, whereas the one in front of the condensing coil is fully open. The 3-way valve bypasses the free cooling coil (to prevent unnecessary head losses) and condensation control is done, when necessary, through modulation of the fans.

Mixed mode

When the ambient temperature is lower than the temperature of the water returning from the system, the controller activates the free cooling section.

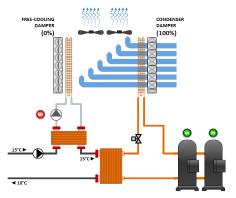

The controller switches over the 3-way valve to put the free cooling coil in series with the evaporator, fully opens the free cooling damper and pushes the fans to maximum speed. In this way, extraction of maximum cooling capacity from the outside air is ensured.

The water leaving the free cooling coil will be the water that enters the evaporator. Since the water is "pre-cooled", the amount of capacity required of the chiller section will be lower and therefore this will be able to operate with reduced capacity.

Since the fans must be kept at 100% to ensure the maximum capacity at the water coil, condensation control is done by modulating the opening of the damper situated in front of the condensing coil.

Free cooling only mode

Below a certain outside air temperature, the unit operates exclusively in free cooling mode.

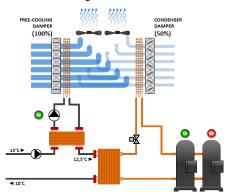

The capacity given by the water coil fully meets the requirement of the system, and therefore the damper in front of the condenser is fully closed and the compressors are kept switched off.

Also, through fan speed modulation, the controller of the unit will manage the capacity given by the free cooling section that, with the lowering of the outside air temperature, could be excessive.

ZETA REV HEI FC/NG

Chiller only mode

When the ambient temperature is higher than the temperature of the water returning from the system, all the required cooling capacity must be produced by the compressors.



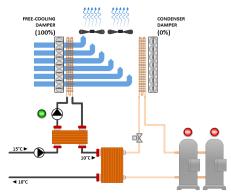
In this mode, the damper that controls the flow rate at the free cooling coil is fully closed, whereas the one in front of the condensing coil is fully open.

The circulation pump on the free cooling circuit remains switched off, whereas condensation control is done, when necessary, through modulation of the fans.

Mixed mode

When the ambient temperature is lower than the temperature of the water returning from the system, the controller activates the free cooling section.

The controller switches on the circulation pump of the free cooling circuit, fully opens the free cooling damper and pushes the fans to maximum speed. In this way, extraction of maximum cooling capacity from the outside air is ensured.


The cooling capacity of the free cooling coil is transferred to the system water through a decoupling exchanger. This allows the glycol water circulating in the free cooling circuit to be separated from the system water that therefore does not need the addition of antifreeze.

The water leaving the decoupling exchanger will be the water that enters the evaporator. Since the water is "pre-cooled", the amount of capacity required of the chiller section will be lower and therefore this will be able to operate with reduced capacity.

Since the fans must be kept at 100% to ensure the maximum capacity at the water coil, condensation control is done by modulating the opening of the damper situated in front of the condensing coil.

Free cooling only mode

Below a certain outside air temperature, the unit operates exclusively in free cooling mode.

The capacity given by the water coil fully meets the requirement of the system, and therefore the damper in front of the condenser is fully closed and the compressors are kept switched off.

Also, through fan speed modulation, the controller of the unit will manage the capacity given by the free cooling section that, with the lowering of the outside air temperature, could be excessive.

Zeta Rev HEi FC

Chillers with DC inverter-controlled brushless compressor. Free-cooling with independent section, No-Glycol option

PRODUCT DESCRIPTION

STRUCTURE

The structure of the unit is made of galvanized sheet-iron coated with polyester powder in RAL 5017/7035 at 180°C, which makes it highly resistant to weather conditions.

The structure is a load-bearing frame, with removable panelling lined with sound absorbing expanded polyurethane matting.

All screws and bolts are stainless steel.

COMPRESSORS

The compressors are hermetic orbiting spiral scroll compressors, each fitted with oil level sight glass.

Depending on the model, there are the following compressor configurations:

- models with just one compressor (x.1) use a single modulating compressor
- models with two compressors (x.2) use one modulating compressor connected in tandem with one ON/OFF compressor
- models with three compressors (x.3) use one modulating compressor connected in trio with two ON/OFF compressors

The modulating compressors are hermetic scroll compressors with permanent-magnet brushless motor and are fitted with oil level sight glass.

The speed of the modulating compressor is varied, depending on the total heat load, roughly between 30 and 105 rps. 30rps and 105rps Its nominal capacity relates to a speed of 90rps. 90rps.

The speed of rotation of the compressor is variable in the range $1.800 \div 6.300$ rpm.

The modulating compressors are controlled through DC inverter. This also has the following functions:

- management of acceleration and deceleration ramps
- management of the operating envelope of the modulating compressor
- management of the alarms and safety devices of the modulating compressor

The use of a modulating compressor allows the total inrush current to be reduced because it is always started with an acceleration ramp. For models with two or three compressors, the starting of the ON/OFF compressors will always take place with the modulating compressor running at low speed, again in order to reduce the inrush current of the unit to a minimum.

The ON/OFF compressors are hermetic orbiting spiral scroll compressors and are fitted with oil level sight glass. The technical compartment enclosing the compressors is soundproofed by sound absorbing material with interposed soundproofing material. The compressors can be accessed through special panelling that allows maintenance operations to be carried out even with units running.

For units with two or three compressors, there is also an oil equalization line.

All the compressors are fitted with crankcase heating device.

CONDENSING COIL

The source-side exchanger is made with aluminium microchannel coil.

The microchannel coils are made using specific aluminium alloys for the tubes and for the fins. This allows the effects of galvanic corrosion to be drastically reduced to always ensure protection of the tubes that confine the refrigerant. The entire coil is also subjected to SilFLUX coating processes (or equivalent) or has zinc added to further increase its corrosion resistance.

The use of microchannel coils compared to conventional copper/aluminium coils reduces the total weight of the unit by about 10% and gives a reduction in refrigerant charge of at least 30%.

Refer to chapters "Installation advice" and "Description of accessories" for assessment of any options or treatments based on the place of installation.

In front of the condensing coil, there is a damper dedicated to controlling the air flow rate at the exchanger, complete with modulating servo control. Damper management is done by the controller following the logics of the patented free cooling system (patent n° IT1855070):

- in chiller mode, the damper is fully open, so allowing the maximum air flow rate, and condensation control is carried out by adjusting the speed of the fans
- in mixed mode (chiller + free cooling) the fans operate at full speed and condensation control is done by modulating the opening of the damper
- in free cooling mode, the damper is fully closed, so ensuring the full flow rate at the free cooling coil alone.

FREE COOLING COIL

The free cooling exchanger consists of a row coil with copper tubes and aluminium fins.

Refer to chapters "Installation advice" and "Description of accessories" for assessment of any options or treatments based on the place of installation.

This exchanger is put in series with the user-side heat exchanger by means of a 3-way valve. When the unit is not working in free cooling mode, the valve allows the coil to be bypassed to prevent unnecessary hydraulic head losses.

For /NG version units, the free cooling coil is connected to a decoupling exchanger situated in series with the evaporator. The coil is supplied by a dedicated circulation pump that will be switched on only with free cooling active.

The free cooling coil is positioned on the opposite side of the machine to the condensing coil so that it can be managed completely independently.

In front of the coil, there is a damper dedicated to controlling the air flow rate at the exchanger, complete with point servo control. Damper management is done by the controller following the logics of the patented free cooling system (patent n° IT1855070):

- in chiller mode, the 3-way valve is closed (for the /NG version, the circulation pump is off), the damper is fully closed, so ensuring the full air flow rate at the condensing coil alone
- in mixed mode (chiller + free cooling), the 3-way valve is open (for the /NG version, the circulation pump is on), the fans work at full speed and the damper is fully open, so allowing the maximum air flow rate at the free cooling coil
- in free cooling mode, the damper is fully open and control of the capacity given by the free cooling coil is done by the controller of the unit by modulating the speed of the fans

FANS

The fans are axial fans, directly coupled to a three-phase 6-pole electric motor, with integrated thermal overload protection (Klixon®) and IP 54 protection rating.

The fan includes the shroud, designed to optimize its efficiency and reduce noise emission to a minimum, and the safety guard.

The fans are controlled as standard by a phase cutting speed adjuster managed by the controller.

USER-SIDE HEAT EXCHANGER

The exchanger is a braze-welded stainless steel plate heat exchanger, insulated with a shroud of closed-cell insulating material.

The exchanger is equipped with two temperature probes (one at the inlet and one at the outlet) for controlling the water temperature and the freeze protection.

REFRIGERANT CIRCUIT

Unit provided with a refrigerant circuit that comprises:

- valve on the liquid line
- charging valves
- liquid sight glass
- welded dehydrator filter on sizes 3.1 and 6.2
- replaceable solid cartridge dehydrator filter on size 8.3
- electronic expansion valve
- high and low pressure switches

The pipes of the circuit and the exchanger are insulated with extruded closed-cell expanded elastomer.

ELECTRICAL CONTROL PANEL

The electrical control panel is made in a painted galvanized sheet-iron box with forced ventilation and IP54 protection rating.

The electrical control panel of the basic unit comprises:

- main disconnect switch
- automatic circuit breakers for compressors with fixed calibration
- fuses for protecting the fans and auxiliary circuits
- thermal magnetic circuit breakers for the pumps (if present)
- contactors for compressors, fans and pumps (if present)
- phase-cutting speed adjuster
- phase monitor
- potential-free general alarm contacts
- single potential free operating contacts for compressors, fans and pumps (if present)
- microprocessor controller with display accessible from the outside

All the electrical cables inside the panel are numbered and the terminal board dedicated to the customer's connections is colored orange so that it can be quickly identified in the panel.

The power supply of the unit is $400V/3\sim+N/50Hz$.

CONTROLLO BLUETHINK

Main controller functions

The microprocessor control allows the following functions:

- water temperature adjustment, with outgoing water control
- · freeze protection
- · compressor timings
- automatic rotation of compressor starting sequence
- recording of the log of all machine inputs, outputs and states
- automatic rotation of compressor starting sequence
- recording of the alarm log
- · digital input for general ON/OFF
- RS485 serial port with Modbus protocol
- Ethernet serial port with Modbus protocol and integrated web server preloaded web page
- USB port

For further details on available functions and on displayed information, you can refer to the specific documentation of the control.

By default, the serial connections present as standard are enabled only for reading from BMS. Enabling of writing from BMS is to be requested when ordering.

Main functions of the webserver

As standard, the Bluethink controller integrates a webserver with a preloaded web page that is accessed via password.

The web page allows the following functions to be carried out (some of these are available only for users with advanced level rights):

- display of the main functions of the unit such as unit serial n°, size, refrigerant
- display of the general status of the machine: water inlet and outlet temperatures, outside air temperature, evaporating and condensing pressures, suction and discharge temperatures
- display of the status of compressors, fans, pumps, thermostatic valves
- display in real time of the graphs of the main quantities
- display of the graphs of logged quantities
- display of alarm log
- management of users on several levels
- remote ON/OFF
- remote set point change
- remote time band change

Human-Machine Interface

The control has a graphic display that allows the following information to be displayed:

- water inlet and outlet temperature
- set temperature and differential set points
- description of alarms
- hour meter of operation and number of start-ups of the unit, the compressors and the pumps (if present)
- high and low pressure values, and relevant condensing and evaporating temperatures
- external air temperature
- superheating at compressor suction.

CONTROLS AND SAFETY DEVICES

All the units are fitted with the following control and safety components:

- high pressure switch with manual reset
- high pressure safety device with automatic reset, for a limited number of occurrences, managed by the controller
- low pressure safety device with automatic reset and limited tripping managed by the controller
- high pressure safety valves
- antifreeze probe at the outlet of the user-side heat exchangers
- differential pressure switch already fitted on the user-side heat exchangers
- overtemperature protection for compressors and fans

TESTING

All the units are factory-tested and supplied complete with oil and refrigerant.

PACKAGING

The unit is made and shipped on a wooden pallet that allows the unit to be handled using a forklift truck.

The unit is wrapped in a protective transparent polyethylene stretch film.

VERSIONS

Zeta Rev HEi FC/NG

In addition to the components of the basic version, the / NG set-up unit has:

- a water/water decoupling plate heat exchanger in place of the 3-way valve
- a circulation pump dedicated to the free cooling circuit (closed circuit inside the unit) with shut-off valves upstream and downstream of it
- a paddle flow switch to protect the free cooling circuit
- water safety valve to protect the free cooling circuit
- expansion vessel with water pressure gauge to protect the free cooling circuit

For this version, the intermediate heat exchanger is always in series with the user-side heat exchanger and therefore the head losses inside the machine do not change with the operating mode.

The use of a decoupling exchanger allows only the water contained in the circuit inside the unit to be glycolated and to use pure water in the system, thereby obtaining an immediate economic saving and improving the heat exchange on individual user points.

OPTIONS

/LN: silenced unit

The unit with this option has a soundproof casing inserted on the modulating compressor.

HYDRAULIC MODULES

All units can be fitted with hydraulic module in various configurations:

- /1P: hydraulic module with one pump
- /2P: hydraulic module with two pumps
- /1PS: hydraulic module with one pump and buffer tank
- /2PS: hydraulic module with two pumps and buffer tank All the above-mentioned modules have pumps with standard discharge head.

Hydraulic modules with one pump have:

- · one pump
- a gate valve on the delivery side of the pump
- an expansion vessel

Hydraulic modules with two pumps have:

- two pumps
- a check valve on the delivery side of each pump
- a gate valve on the outlet of the delivery manifold
- an expansion vessel

In the version with 2 pumps, these are always with one on standby while the other is working. Switching over between the pumps is automatic and is done by time (to balance the hours of operation of each one) or in the event of failure.

Hydraulic modules with tank also have:

· a tank with drain valve and air valve

DESCRIPTION OF ACCESSORIES

Refrigerant circuit accessories

Some accessories may be incompatible with each other even if not expressly indicated.

RG Condensation control with fan speed adjuster (S)

The control manages the speed of the fans through a phase cutting speed adjuster, in order to optimize the operating conditions and efficiency of the unit.

This control also has the effect of reducing the noise level of the unit: in fact, the typical conditions under which the control will be modulating the speed of the fans are those of the night, spring and autumn.

For units equipped with EC fans, the same function is carried out using the electronically commutated motor of the fans and is supplied as standard.

VTE Electronic expansion valve (S)

The use of this component is particularly advisable on units operating in very variable heat load or operating mode conditions, as in the case of joint management of air conditioning and high temperature water production. The use of an electronic thermostatic valve allows you to:

- maximize heat exchange at the evaporator
- minimize response times to changes in load and operating conditions
- optimize control of overheating
- ensure maximum energy efficiency

MAFR Pressure gauges

The operating pressures of each circuit of the unit can be displayed on the control by accessing the relevant screens. Also, the machine can be fitted with pressure gauges (two for each circuit) installed in a clearly visible position. These allow reading in real time of the working pressures of the refrigerant gas on the low pressure side and on the high pressure side of each refrigerant circuit.

RUB Compressor suction and delivery valves

The valves situated on the delivery side and on the suction side of the compressors allow the compressor to be isolated from the rest of the refrigerant circuit, so making the maintenance operations quicker and less invasive

BC Capacitive backup battery for electronic expansion valve

When the compressors stop, the controller always closes the electronic expansion valve to prevent dangerous refrigerant migration. The presence of the backup battery ensures that the electronic valve is kept in closed position even when there is no power supply

This option uses a condenser as energy storage, and not an ordinary coil. In this way, it is not affected by the memory effect of normal coils and the need for maintenance is avoided.

VS Liquid line solenoid valve

This accessory prevents refrigerant migration that could damage the compressor on starting.

RIC Liquid receiver

The adoption of this accessory always guarantees correct feeding of the expansion valve even when the unit is subjected to wide external air temperature ranges.

BK Brine Kit

This accessory is compulsory if a water temperature set point lower than $+3^{\circ}$ C is used (if the unit is provided with double set point or variable set point, the lower set point is considered).

The accessory consists of increased insulation and suitable sizing and calibration of some components.

The inlet and outlet temperatures of the user-side exchanger must be given on ordering to allow correct setting of the alarm parameters and verification of the sizing of the expansion valve.

The cooling set point can then be changed by the customer in an interval that, compared to the set point given on ordering, ranges from -1K up to the maximum temperature allowed by the above-stated operating limits. The unit will be optimized to work at the set point temperature given on ordering. For different set points, the cooling capacity provided and the level of efficiency of the machine could decrease and move away from these conditions.

RPR Refrigerant leak detector

With this accessory, a refrigerant leak detector is placed inside each compressor compartment. Detection of a refrigerant leak is managed by the controller through a specific alarm and display of a specific icon on the display of the controller. This alarm stops the unit.

RPP Refrigerant leak detector with automatic pump down

With this accessory, a refrigerant leak detector is placed inside each compressor compartment. Detection of a refrigerant leak is managed by the control through a specific alarm and display of a specific icon on the display of the control. For all the circuits of the unit, the alarm also starts the machine stopping procedure with pump down, confining all the refrigerant in the coils.

The accessory includes the capacitive backup battery.

Fan accessories

VEC EC fans

With this accessory, EC fans, with electronically commutated brushless motor, are used for the ventilating section. These guarantee very high efficiency levels for all working conditions and allow a 15% saving on the power absorbed by each fan working at full capacity.

Also, through a 0-10V analogue signal sent to each fan, the microprocessor carries out condensation/evaporation control by continuous adjustment of the air flow rate as the external air temperature changes, with a further reduction in electrical absorption and noise emission.

For further details, see the dedicated chapter: "Aeraulic head losses and options available for the fan section".

VEM Oversize EC fans

The increased EC fans allow to obtain the same benefits as EC fans and in addition allow to have a residual useful head of about 100Pa.

For further details, see the dedicated chapter: "Aeraulic head losses and options available for the fan section".

Hydraulic circuit accessories

Some accessories may be incompatible with each other even if not expressly indicated.

V3M 3-way modulating valve

With this accessory, a 3-way modulating valve is used in place of the three-point 3-way valve normally used. This accessory is useful in applications where fan management alone is not sufficient to regulate the capacity given by the free cooling coil. This can happen in applications where the load is very variable or when the outside air temperature can fall many degrees below zero.

The controller modulates the free cooling capacity by acting on the speed adjuster of the fans, but if, even with fans off, the capacity given by the water coil is excessive, the water flow rate will be reduced by modulating the opening of the 3-way valve.

VSIW Water-side safety valve

With this accessory, a safety valve is inserted in the hydraulic circuit of the unit: when the calibration pressure is reached, the valve opens and, by discharging (to be routed by the customer), prevents the system pressure from reaching limits that are dangerous for the components present in the system. The valves have positive action, that is, performance is guaranteed even if the diaphragm deteriorates or breaks.

FLUS Flow switch (instead of the water differential pressure switch)

As an alternative to the differential pressure switch (standard flow sensor), it is possible to request the paddle flow switch as accessory. This detects when there is no water flow to the user-side exchanger and sends a signal to the control of the unit that will stop the compressors to prevent damage to the exchangers.

The flow switch is supplied loose (installation by the customer) and replaces the water differential pressure switch (standard).

FLUS Flow switch (instead of the water differential pressure switch)

As an alternative to the differential pressure switch (standard flow sensor), it is possible to request the paddle flow switch as accessory. This detects when there is no water flow to the user-side exchanger and sends a signal to the control of the unit that will stop the compressors to prevent damage to the exchangers.

Application of this accessory is compulsory for units that use non-glycol water and work with a yearly cycle where external air temperatures are zero or below.

The flow switch is supplied loose (installation by the customer) and replaces the water differential pressure switch (standard).

CORM Connection for manual filling

This accessory allows the system filling procedure to be carried out directly from the unit: on the fan holder cover, there is a 1" filling valve and a 1/2" air valve. Near the filling valve, there is also a pressure gauge for displaying the pressure in the hydraulic circuit. This accessory can be combined only with units provided with tank.

Electrical accessories

Some accessories may be incompatible with each other even if not expressly indicated.

A41N 415/3+N/50 power supply

415/3+N/50 power supply. Available for the following units: for Zeta Rev and Zeta Rev LE from size 3.2 up to size 10.2, for HE and SLN configurations from size 3.2 up to size7.2.

A43N Power supply 400/3+N/50

Power supply present as standard in the following units: for Zeta Rev and Zeta Rev LE from size 3.2 to size 10.2, for HE and SLN configurations from size 3.2 to size 7.2.

SETD Double set point from digital input

The accessory allows you to preset two different operating set points and manage the change from one to the other through a digital signal.

The set point temperatures must be specified when ordering. For optimization of the unit, reference will be made to the lowest set point.

Unless otherwise specified in the order, the controller will be set at the factory with the following temperatures:

- set point 1 at 7°C
- set point 2 at 12°C

SETV Variable set point with remote signal

The accessory allows the set point to be varied continuously between two preset values, a maximum and a minimum, depending on an external signal that can be of the 0-1V, 0-10V or 4-20mA type.

The set point temperatures and the type of signal to use for the adjustment must be specified when ordering. For optimization of the unit, reference will be made to the lowest set point.

Unless otherwise specified in the order, the controller will be set at the factory with 0-10V analogue input and with the following temperatures:

- 0V will correspond to a set point of 7°C
- 10V will correspond to a set point of 12°C

CP Single potential free operating contacts

For units fitted with this accessory, there are clean contacts available on the terminal board inside the electrical box from which the customer can acquire signals that show the status of the unit's components (compressors, fans, pumps, alarms).

TERM Remote-controlled user terminal panel

This accessory allows the terminal normally situated on the machine to be replicated on a support situated at a distance. It is particularly suitable when the unit is placed in an area that is not easily accessible.

The accessory is supplied loose and is to be installed by the customer at a maximum distance of 120m from the unit. We advise using a cable of the following type: "TECO O.R. FE 2x2xAWG24 SN/ST/PUR".

For this accessory, there is a dedicated serial port.

DAA Double power supply with automatic switching

A motor-driven automatic switch to which to connect two separate power supply lines (for example, one from the mains power line and one from the uninterruptible power supply unit) is installed in the electrical control panel of the unit.

The switching from one line to another is automatic and obligatorily requires passing through the OFF position. When this accessory is requested, the power supply of the unit must compulsorily include neutral.

DAM Double power supply with manual switching

A manual switch to which to connect two separate power supply lines (for example, one from the mains power line and one from the uninterruptible power supply unit) is installed in the electrical control panel of the unit. The switching from one line to another is manual and obligatorily requires passing through the OFF position.

SQE Heater for electrical control panel

Electric heaters are positioned inside the electrical control panel and these prevent the formation of ice or condensation inside it.

RE1P Relay for management of 1 external pump

This accessory can be requested for units without pumps and allows a pump outside the machine to be controlled.

RE2P Relay for management of 2 external pumps

This accessory can be requested for units without pumps and allows two pumps outside the machine to be controlled with a running/stand-by logic by implementing a rotation on the hours of operation.

The two pumps are controlled by two separate relays.

RMMT Maximum and minimum voltage relay

This accessory constantly monitors the voltage value and the unit's power supply phase sequence. If the supply voltage does not fall within the set parameters or there is a phase reversal, an alarm is generated that stops the machine to prevent damage to its main parts

IACV Automatic circuit breakers

With this accessory, automatic circuit breakers are installed instead of fuses for the protection of auxiliary loads. Also, the same accessory uses automatic circuit breakers with adjustable thermal overload protection to protect the compressors.

CSP Set point compensation depending on external air temperature

For units fitted with this accessory, the set point of the unit is set so that it can vary between two values, a maximum and a minimum, depending on the external air temperature. The compensation ramp and the maximum and minimum values of the set point can be changed by the user.

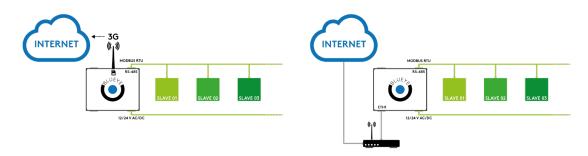
Unless otherwise specified in the order, the controller will be set to implement a positive compensation logic according to the temperatures shown in the following diagrams:

SQE Heater for electrical control panel

Electric heaters are positioned inside the electrical control panel and these prevent the formation of ice or condensation inside it.

SUN Heaters for operation with air below -25°C

Electric heaters are positioned inside the electrical control panel and these prevent the formation of ice or condensation inside it.


If the operating temperatures of the unit can extend below -25°C, specific measures must be adopted to guarantee correct operation of the unit and the reliability of critical components.

Depending on the limit temperature it is necessary to reach, use will be made of suitably positioned heaters and additional thermal protection up to adoption of special electrical conductors.

BERS Blueve® via RS485

This accessory requires use of the Blueye device, installed and wired in the unit through a RS485 serial port on the ModBus RTU protocol.

This option requires integration with one contract of the Blueye Cloud series. (Basic or Advanced one)

PBA BACnet protocol over IP (Ethernet)

The controller is set for use, in read and write mode, of the BACnet port on IP protocol.

By default, the programming gives read-only access to the control of the unit. Reading / writing access is activable on field with a service level.

GLO Modbus Lonworks Gateway

With this accessory, a RS485/Lon gateway is installed inside the electrical control panel.

By default, the programming gives read-only access to the control of the unit. Reading / writing access is activable on field with a service level.

SMAR Smartlink function predisposition

This accessory makes it possible to connect the controller of the unit with the controller of a Swegon $GOLD^{TM}$ air handling unit via a simple serial cable, so allowing their operating logics to be merged into a single consciousness that pursues the maximum energy efficiency of the system. The RS485 serial interface is already included and dedicated to connection with Swegon units.

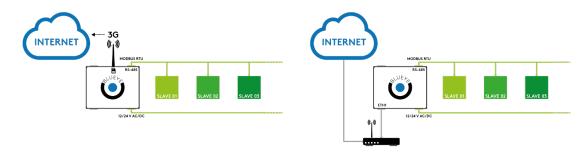
The option is incompatible with:

- · double set point
- · variable set point with remote signal
- summer/winter selection by digital input
- set point compensation depending on external air temperature
- multilogic
- · all communication protocols.

SMAP Setup of Smartlink+ functions

This option is used to connect the controller in the unit with the controller of a Swegon $GOLD^{TM}$ air handling unit via the Ethernet port TCP/IP, so allowing the operating logics of hydronic and ventilation systems to be merged into a single logic for the achievement of maximum energy efficiency and comfort. This option is only available for units featuring an advanced controller and it is compatible with Multilogic and Hyzer systems only if the machine is the Master.

The option is incompatible with:


- · double set point
- · variable set point with remote signal
- set point compensation depending on external air temperature
- all communication protocols.

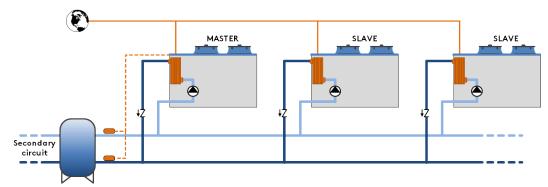
SW4P Network switch with 4 ports

The accessory includes installation in DIN rail of a professional 4-port network switch. Requires Blueye via Ethernet.

SW8P Network switch with 8 ports

The accessory includes installation in DIN rail of a professional 8-port network switch. Requires Blueye via Ethernet.

SERI RS485 serial interface with Modbus protocol


RS485 serial interface with Modbus protocol.

PSN SNMP protocol

The accessory consists of a gateway that allows Ethernet connection to a SNMP manager supervision system. The use of this accessory causes the RS485 serial port to be unavailable.

FMx Multilogic Function

The Multilogic function allows management of up to 32 units equipped with advanced Bluethink controller and connected in hydraulic parallel with each other.

On the basis of the information recorded by the temperature probes installed on the delivery and return manifolds of the system, with the master unit, a capacity request is generated that is distributed among the units connected in the Multilogic network according to settable priority and optimization logics.

If communication between the units fails or if the master is off-line, the slave units can continue to work according to the set thermoregulation parameters.

The connected units can be different from each other, in terms of capacity and set-up, provided the following rules are complied with:

- if there are both chiller units and heat pumps in the Multilogic network, the Master unit must obligatorily be one of the HP units
- if there are both free cooling and non free-cooling units in the Multilogic network, the Master unit must obligatorily be one of the free-cooling units.

The Multilogic function that can be requested with the unit can be:

- FMO: Multilogic function for Slave unit
- FM2: Multilogic function for Master unit for managing up to 2 Slaves
- FM6: Multilogic function for Master unit for managing up to 6 Slaves

If you need to connect more than 6 slaves (up to 31), you can ask for a quotation from our sales department. For the slave units, the accessory requires:

• programming of the unit as slave of a system of machines in Multilogic network

For the master units, the accessory requires:

- programming of the unit as master of a system of machines in Multilogic network
- entering of the parameters necessary for connection with the individual slave units
- installation in the electrical control panel of a network switch to allow the units to be connected in a LAN network.
- the supply of 2 temperature probes to be positioned on the delivery and return manifold of the system (supplied separately with it, installation and wiring by the customer)

The connection between the master unit and the slave units made with a CAT cable. 5E/UTP (prepared by the customer) with RJ45 connectors. Maximum cable length 100m.

For further details, please refer to the controller manual.

Other accessories

AG Rubber anti-vibration mounts

These allow you to reduce the vibrations transmitted from the unit to the surface it is standing on. Accessory supplied loose.

MCHE E-coated microchannel coil

The e-coated microchannel coils are treated by immersion of the whole exchanger in an emulsion of organic resins, solvents, ionic stabilisers and deionised water. This is all subjected to a suitable electric field that causes the formation of a solid, uniform deposit on the exchanger. The function of this deposit will be to protect the aluminium from corrosion without penalising its thermophysical properties.

Protective treatment of the exchanger is strongly recommended if at least one of the points below is verified:

- there are obvious signs of corrosion of the exposed metal surfaces in the installation area
- the installation is located close to the sea coast
- the prevailing winds come from the sea towards the unit
- the environment is industrial with a significant concentration of pollutants
- the environment is urban with a high population density
- the environment is rural with the presence of organic discharges and effluents.

With reference to the protection criteria to follow, especially for installations close to the coast, refer to the section titled "Installations that require the use of treated coils".

RAAL Cu/Al coils

This accessory uses finned pack coils with copper tubes and aluminium fins instead of microchannel coils.

ANTC Coil treated with anti-corrosion paints

The treatment is applied to the finned pack coils with copper pipes and aluminum fins and consists in the passivation of the aluminum with a polyurethane base through a procedure of immersion and then of a spray application of the coating that guarantees a double protection of the finning all over the exposure to the most aggressive environmental conditions even for more particular (or niche) process applications.

Specifically, the immersion process guarantees complete coverage of galvanic corrosion while the application of the spray protects the ends of the fins which represent the critical point for the initiation of the corrosion phenomenon.

The choice of whether or not to treat the exchanger should be made in relation to the environment in which the unit is to be installed and through observation of other structures and machinery with exposed metal surfaces present in the destination environment.

The cross observation criterion is the most valid method of selection currently available without having to carry out preliminary tests or measurements with instruments.

Protective treatment of the exchanger is strongly recommended if at least one of the points below is verified:

- there are obvious signs of corrosion on the exposed metal surfaces in the installation area
- the installation is located close to the sea coast
- the prevailing winds come from the sea and travel in the direction of the unit
- the environment is industrial with a significant concentration of pollutants
- it is an urban environment with a high population density
- it is a rural environment with the presence of organic discharges and effluents

For chiller units, this accessory also includes the "Cu/Al coil" accessory.

With reference to the protection criteria to follow, especially for installations close to the coast, refer to the section titled "Installations that require the use of treated coils".

BFAN Free cooling coil treated with anti-corrosion paints

Specific option for free-cooling coils.

The treatment is applied to the finned pack coils with copper pipes and aluminum fins and consists in the passivation of the aluminum with a polyurethane base through a procedure of immersion and then of a spray application of the coating that guarantees a double protection of the finning all over the exposure to the most aggressive environmental conditions even for more particular (or niche) process applications.

Specifically, the immersion process guarantees complete coverage of galvanic corrosion while the application of the spray protects the ends of the fins which represent the critical point for the initiation of the corrosion phenomenon.

The cross observation criterion is the most valid method of selection currently available without having to carry out preliminary tests or measurements with instruments.

Protective treatment of the exchanger is strongly recommended if at least one of the points below is verified:

- the presence of corrosive phenomena on the metal surfaces exposed in the installation area is evident
- the installation is located close to the sea coast
- the prevailing winds come from the sea towards the unit
- · the installation is located close to the sea coast
- the environment is industrial with a significant concentration of pollutants
- the environment is urban with a high population density
- the environment is rural with the presence of organic discharges and effluents

For chiller units, this accessory also includes the "Cu/Al coil" accessory.

With reference to the protection criteria to follow, especially for installations close to the coast, refer to the section titled "Installations that require the use of treated coils".

With reference to the protection criteria to follow, especially for installations close to the coast, refer to the section titled "Installations that require the use of treated coils".

FW Water filter

To protect the elements of the hydraulic circuit (in particular, the exchangers), there are Y filters that can stop and settle the particles that are normally present in the water flow and would otherwise settle in the more delicate parts of the hydraulic circuit and damage its heat exchange capacity.

Installation of the water filter is mandatory even when it is not supplied as an accessory.

Accessory supplied loose.

PREA Unit suitable to be disassembled on site

The unit is delivered so that it can be disassembled easily on site if this makes the installation operations easier.

A unit requested with this option is supplied:

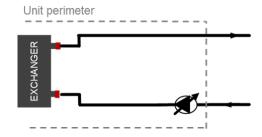
- · screwed instead of riveted
- · with plugged and not welded pipes
- without refrigerant charge
- untested
- covered by the warranty only if reassembled and screwed together by personnel authorized by the factory

SLCO Skid for shipping in container

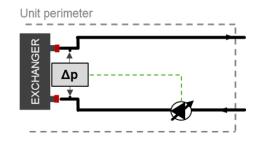
The accessory provides for the installation of a wooden sled for loading and a fixing system inside the container by a strap. The accessory must be used for shipping in container. Loading on containers must be carried out at the factory. The accessory is incompatible with "Packaging in wooden crate".

Flowzer options

Our range of Flowzer options offers flexible and scalable solutions to set the speed of pumps in the system with a view to optimising and reducing energy consumption. Different types of control modes are offered based on the system and application type:

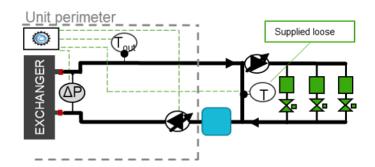

- FLOWZER VP Inverter for manual pump adjustment
- FLOWZER VD control of available pump discharge head for variable flow systems without monitoring the flow rate limits;
- FLOWZER VDE flow rate control to keep the flow rate constant as the external working conditions of the system change;
- FLOWZER VDT flow rate control with constant TD (difference between input and output temperature in the heat exchanger on the user side) in variable flow pumps, without monitoring the flow rate limits;
- FLOWZER VFPP automatic management of variable flow rate in systems with one single primary circuit and a bypass valve;
- FLOWZER VPS automatic management of variable flow rate, including balancing of flow rates between primary and secondary circuits;
- flowzer vps with TD-based control automatic management of variable flow rate, including control with constant TD (difference between input and output temperature in the heat exchanger on the user side) in systems featuring both the primary and secondary circuits.

The tables below summarise the main system diagrams and show the application type and advantages/disadvantages offered by each solution. Each individual option is illustrated and explained individually in the next pages.

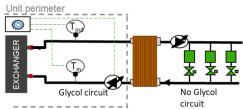

The hydraulic diagrams in this document are for exemplification purposes only and their main function is to help the reader understand the type of machines and devices the controller can manage. For a more technical evaluation of the system, please refer to the dedicated manual.

Constant flow system				
Application		Advantages	Disadvantages	
Flowzer VP	Ideal for constant flow systems The option is given to set two different speeds: one for heating and one for cooling mode or one for chiller and one for FC mode. This solution replaces the 2-way regulating valve.		This solution doesn't allow to save energy in the pump under part load conditions, due to the possibility to only set two frequency values in the inverter.	
Flowzer VDE	Ideal for constant flow systems to keep the water flow to the heat exchanger constant under all conditions	 Plug&Play: provides for easy and flexible implemen- tation as it is not supplied with options to be fitted therefore allows for quick commissioning. 	This solution is less efficient as losses in the heat exchanger are kept constant under all conditions (including in cases when they may be reduced).	

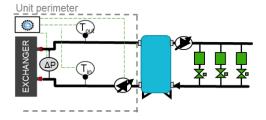
FLOWZER VP

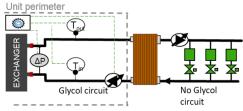


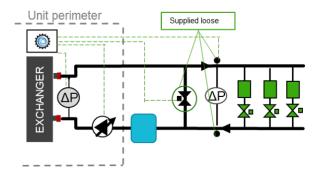
FLOWZER VDE

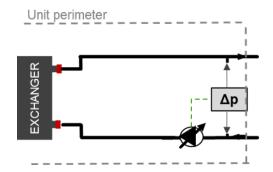

Variable flow system featuring primary and secondary circuits				
	Application	Advantages	Disadvantages	
Flowzer VPS	Ideal for all systems featuring a primary and a secondary circuit divided by a hydraulic bypass branch	- Energy saving: the energy consumption during pumping operations can be cut down to 55% if compared with a traditional system - Enhanced comfort: correct balancing between primary and secondary loop	Only recommended in systems featuring a primary and a secondary circuit divided by a bypass pipe; not flexible for other applications	
Flowzer VDT	Ideal for systems featuring similar users or users with similar operating conditions It is recommended in structured systems in which the client has third-party systems to control the min. and max. flow rate.	- Plug&Play: provides for easy and flexible implemen- tation as it is not supplied with options to be fitted and for quick commissioning.	Risk of over- or underflow for some of the users in the secondary circuit if they have different operating conditions (same temperature difference) A control is required by third-party equipment to ensure compliance with the unit flow limits.	
FLOWZER VPS with TD-based control	Ideal for systems featuring similar users or users with similar operating conditions Ideal for systems featuring a primary and a secondary circuits physically divided from the heat exchanger or a tank with multiple connections.	- Plug&Play: provides for easy and flexible implemen- tation as it is not supplied with options to be fitted and for quick commissioning.	Risk of over- or underflow for some of the users in the secondary circuit if their temperature difference is not the same due to the exi- sting operating conditions	

FLOWZER VPS

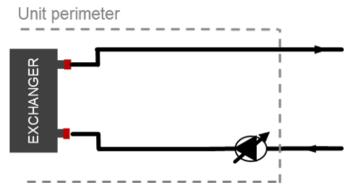



FLOWZER VDT


FLOWZER VPS with DT-based control

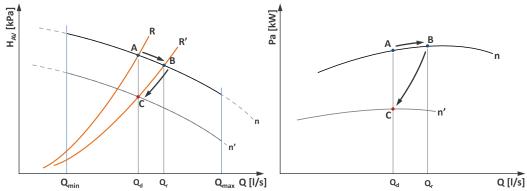


Variable flow system featuring primary circuit only				
	Application	Advantages	Disadvantages	
Flowzer VFPP	Ideal for new systems in- tended to reduce installation costs	- Energy saving: the energy consumption during pumping operations can be cut down to 50% if compared with a traditional system Lower CAPEX thanks to reduced installation costs and smaller number of components (one pump less)	Requires some testing to correctly set the pressure available in the system and to correctly position the two transducers, based on the system layout and devices.	
Flowzer VD	Ideal for systems fitted with changing users according to the season. Ideal for industrial processes, such as injection moulding, in order for each terminal to operate with the correct discharge head. It is recommended in structured systems in which the client has third-party systems to control the min. and max. flow rate.	- Plug&Play: provides for easy and flexible implementation as it is not supplied with options to be fitted therefore allows for quick commissioning.	A control is required by third-party equipment to ensure compliance with the unit flow limits.	


Flowzer VFPP

Flowzer VD

FVP FLOWZER VP - Inverter for manual pump adjustment

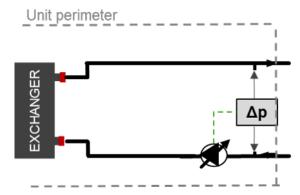


The accessory consists of inserting an inverter in the machine to manually adjust the speed of the pump (or pumps) in order to calibrate the pump flow rate on the head losses of the system.

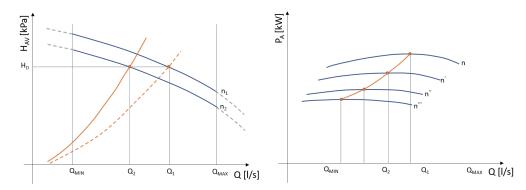
This accessory is to be combined with one of the integrated hydraulic modules that can be selected for the unit. Units equipped with integrated hydraulic module allow a certain level of available discharge head (point A) to be obtained under nominal flow rate conditions Qd.

But the actual head loss level of the system (e.g. characteristic curve R') normally causes the pump to find a different equilibrium point (point B), with a flow rate Qr higher than Qd.

In this condition, in addition to having a different flow from the nominal one (therefore also a different temperature jump), there is also a greater absorption of electric power from the pump itself.



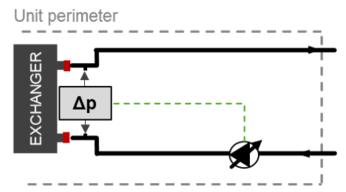
The use of the Flowzer allows the pump speed to be set manually (e.g. at speed n' instead of n) to obtain the design water flow rate and thermal gradient (point C). Once the adjustment procedure has been carried out, the pump will always work at a fixed flow rate.


The adoption of the VP Flowzer allows to considerably reduce the electrical power consumption of the pump with a consequent energy saving. By way of example, a reduction in the flow rate of 10% leads to a reduction in power consumption of around 27%.

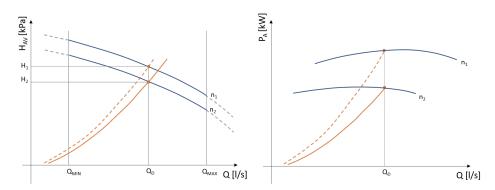
For the freecooling units the Flowzer VP is able to manage two different speeds of the pump automatically compensating the pressure drops of the water coil.

FVD FLOWZER VD - control of available pump discharge head for variable flow systems without monitoring the flow rate limits;

Flowzer VD requires two pressure transducers to be installed in the machine. Through these transducers, the inverter can gauge the actual pressure at the ends of the system and it can automatically adapt the pump speed to obtain a set available discharge head value. Flowzer VD must be combined with Flowzer VP. This accessory therefore allows a constant pressure system to be achieved.

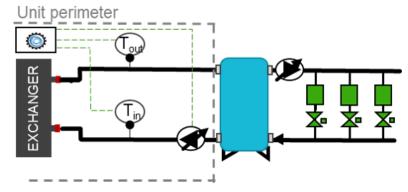


With the Flowzer VD, the customer can set, directly on the display, the available discharge head value (Hd) that the unit must maintain. As can be seen from the graph as the user request decreases, the resistant curve of the plant moves to the left, consequently the inverter reduces the speed of the pump in order to maintain the useful head necessary for the unit. With this system a significant reduction in electrical power is achieved. The customer will have to check that, in minimum flow rate conditions (that is, with the maximum number of user points closed), this is always higher than or equal to the minimum flow rate allowed by the unit.


This accessory is useful when the total head losses of the circuit are slightly variable or when they change depending on the seasons (for example, some user points are active only during summer operation and not during winter operation).

The use of this accessory also allows the pump speed to be adapted to possible fouling of the filter on the hydraulic circuit.

FVDE FLOWZER VDE - flow rate control to keep the flow rate constant as the external working conditions of the system change;

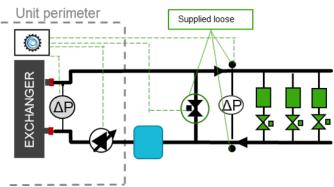


Flowzer VDE requires a differential pressure transducer to be installed in the machine. Through this transducer, the inverter can gauge the actual pressure at the ends of the heat exchanger installed in the machine and it can automatically adapt the pump speed for a constant flow value under all conditions. Flowzer VDE must be combined with Flowzer VP.

Flowzer VDE is used to automatically adjust the pump speed. As the graph shows, the inverter trips and increases the pump speed if a different condition occurs which would cause an undesired drop in the flow rate (e.g. operation of an external dry cooler). This is a more accurate solution than the VP option alone as it always provides for the water flow (Qd) required by the design conditions.

FVDT FLOWZER VDT - flow rate control with constant TD (difference between input and output temperature in the heat exchanger on the user side) in variable flow pumps, without monitoring the flow rate limits;

Flowzer VDT uses the temperature sensors installed at the inlet and outlet of the heat exchanger to automatically adjust the pump speed, thus keeping the T delta difference setpoint constant.


The option is not compatible with the Multilogic version. Please refer to the HYZER solutions for the compatibility between variable flow systems and multi-machine systems.

The unit must include the advanced Bluethink controller and just one heat exchanger on the user side.

With the Flowzer VDT, the customer can set, directly on the display, the available delta T value that the unit must maintain. The customer will have to check that, in minimum flow rate conditions (that is, with the maximum number of user points closed), this is always higher than or equal to the minimum flow rate allowed by the unit.

This option is specifically designed for systems in which the system users have similar operating conditions (same temperature difference).

FVF FLOWZER VFPP - automatic management of variable flow rate in systems with one single primary circuit and a bypass valve;

Bluethink solution for a variable flow rate system, consisting solely of a user-side primary circuit. Flowzer VFPP includes:

- a pressure transducer installed at the ends of the user-side exchanger (Δpe)
- a dedicated control system, installed at the factory in the electrical control panel of the unit (Sc)
- a modulating bypass valve with servo-motor supplied separately with it (Vbp), supplied loose (installation by the customer)
- two system pressure transducers (Δpp) supplied separately (installation by the customer)

It is obligatory for the option to be combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit. The accessory is not compatible with Multilogic. Please contact our sales department for further details.

The unit must include the advanced Bluethink controller, just one heat exchanger on the user side and a minimum capacity step of 25% or less.

The option offers a complete default package to guarantee simple selection, purchasing and commissioning. Flowzer VFPP has the advantage of:

- implementing an innovative design, which is alternative to the classic system based on fixed flow-rate primary circuit plus secondary circuit
- being ideal for new or entirely redesigned systems, especially for comfort applications
- having a variable flow system, with maximum energy saving
- simplifying the layout of the user circuit
- limiting the capex of the system
- performing a reliable check

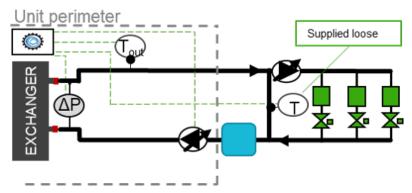
The Flowzer VFPP system controller uses an advanced algorithm that enables prevention of unnecessary waste of energy and hunting by the inverter and the bypass valve.

The capex of the system is also reduced thanks to:

- single inverter + pumping module, integrated in the unit
- small internal footprint, due to the simplified layout

The operating principle can be summarized as follows:

- Flowzer VFPP carries out constant control of the discharge head
- the controller modulates the pump speed according to the signal detected by the system transducers Δpp
- as the demand from the system goes down, the pump speed will be reduced.
- the pump speed can be reduced until it reaches the minimum allowed flow rate on the heat exchanger of the unit
- this flow rate is indirectly monitored through the losses detected by the differential pressure transducer Δpe
- When the minimum allowed flow rate threshold is exceeded, the control system will open the bypass valve Vbp to recirculate the flow rate that is not required by the system, but is necessary to guarantee the minimum flow rate to the heat exchanger.


In the required minimum load condition (that is, with all system terminals switched off) the necessary minimum volume (Vmin) must be ensured by the relevant tank to be installed between the unit and the separator or the bypass pipe.

The bypass valve Vbp is controlled through a 0-10 V signal and must therefore be installed within 30 m of the unit.

The pressure transducers of the system Δpp provide a 4-20 mA signal and require two 1/4" female fittings. These transducers must be installed within 200 m of the unit, near the system terminal that is affected by the highest line head losses or in any case in a position where it is possible to measure an adequate pressure value.

Further details can be found in the relevant manual.

FVPS FLOWZER VPS - automatic management of variable flow rate, including balancing of flow rates between primary and secondary circuits;

Bluethink solution for a variable flow rate system, consisting of a primary circuit plus secondary circuit.

It is obligatory for the option to be combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit. The accessory is not compatible with Multilogic. Please contact our sales department for further details.

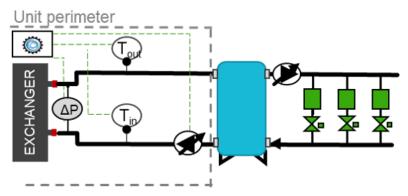
The unit must include the advanced BlueThink controller and just one heat exchanger on the user side.

The option offers a complete default package to guarantee simple selection, purchasing and commissioning. Flowzer VPS has the advantage of:

- being ideal for renovations of existing systems, especially for comfort applications
- achieving a complete variable flow system, with maximum energy saving
- implementing a flexible design, e.g. for scalable or multi-zone systems

The maximum energy saving is achieved thanks to the advanced algorithm, which prevents hunting by the inverter and balances the pump speed and the recirculation flow rate to a minimum.

With refurbishments, the system's capex is limited to the unit and its commissioning.


The dimensions of the inverter of the unit and of the pump module can be favoured by the low design discharge head of the primary circuit.

The operating principle can be summarized as follows:

- Flowzer VPS performs a smart check of the flow rate in the primary circuit and balances it with the flow rate in the secondary circuit.
- the system controller modulates the pump speed according to the condition detected by the system sensors T
- if the system terminals are switched off, the flow rate of the secondary circuit will decrease; therefore the direction of flow is detected indirectly as temperature difference by the system sensors through the separator or the bypass pipe
- The check thus contributes to reducing the speed of the primary pump until the min. flow threshold in the heat exchanger of the unit is exceeded.
- this flow rate is indirectly monitored through the losses detected by the differential pressure transducer Δpe In the required minimum load condition (that is, with all system terminals switched off) the necessary minimum volume (Vmin) must be ensured by the relevant tank to be installed between the unit and the separator or the bypass pipe.

The temperature sensors of the system T provide a 4-20 mA signal and require 1/2" female fittings. Further details can be found in the relevant manual.

FVPD FLOWZER VPS with TD-based control - automatic management of the variable flow rate, including control with constant temperature difference (TD) in the heat exchanger on the user side in systems featuring both the primary and secondary circuits.

Bluethink solution for variable flow systems - ideal for systems featuring a primary and a secondary circuit physically divided by a heat exchanger or a tank with multiple connections.

flowzer vps with TD-based control includes:

• a differential pressure transducer, installed at the factory at the ends of the user-side heat exchanger of the unit (Δpe)

The option must be necessarily combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit. The option is not compatible with the Multilogic version. Please refer to the HYZER solutions for the compatibility between variable flow systems and multi-machine systems.

The unit must include the advanced Bluethink controller and just one heat exchanger on the user side.

The option offers a complete default package to guarantee simple selection, purchasing and commissioning. flowzer vps with TD-based control offers the following advantages:

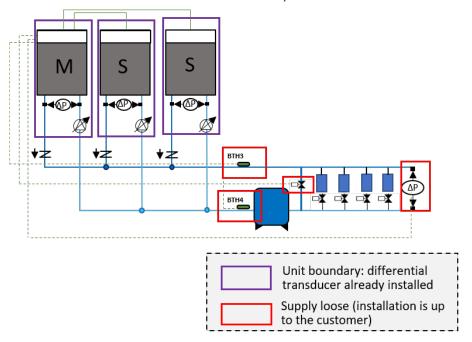
- a full package that is easy to install as all the regulating devices are pre-assembled and pre-wired in the unit;
- achieving a complete variable flow system, with maximum energy saving
- the ideal solution to refurbish existing systems where the T different must be kept constant in the system, especially in comfort applications;

The maximum energy saving is achieved thanks to the advanced algorithm, which prevents hunting by the inverter and balances the pump speed and the recirculation flow rate to a minimum.

The dimensions of the inverter of the unit and of the pump module can be favoured by the low design discharge head of the primary circuit.

The operating principle can be summarized as follows:

- flowzer vps with TD-based control performs smart monitoring of the flow rate in the primary circuit, keeping the T difference constant in the heat exchanger;
- the system controller modulates the pump speed according to the condition detected by the temperature sensors (T) in the system, which are installed at the inlet and outlet of the heat exchanger on the user side;
- the difference in the water temperature (T) and flow rate are inversely proportional, which is why if the T difference is reduced at the same performance level, the water flow exceeds the flow required by the system and the pump speed is reduced in order to save energy;


on the other hand, when the load increases, the T difference increases in the system and the pump speed is increased accordingly.

- The check contributes to reducing/increasing the speed of the pump in the primary circuit until the min./ max. flow threshold admitted in the heat exchanger of the unit is exceeded.
- this flow rate is indirectly monitored through the losses detected by the differential pressure transducer Δpe The temperature sensors of the system output a 4-20 mA signal.

Further details can be found in the relevant manual.

HFx HYZER E VFPP function

The HYZER E VFPP function combines the Multilogic function, which is designed to manage multi-machine systems, with the FLOWZER VFPP control for variable flow systems.

It is obligatory for the option to be combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit.

The unit must include the advanced Bluethink controller, just one heat exchanger on the user side and a minimum capacity step of 25% or less.

Units operate according to the Master/Slave logic that is typical of a Multilogic system. For additional details, please refer to the FMx option.

The HYZER E function requested with the unit can be:

- HFO: HYZER E VFPP function for Slave units;
- HF2: HYZER E VFPP function for the Master unit in order to manage up to 2 Slave units;
- HF6: HYZER E VFPP function for the Master unit in order to manage up to 6 Slave units.

If you need to connect more than 6 slaves (up to 31), you can ask for a quotation from our sales department. For the slave units, the accessory requires:

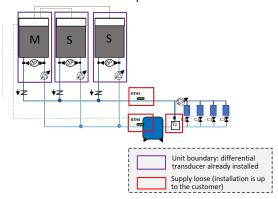
- programming of the unit as slave of a system of machines in Multilogic network For the master units, the accessory requires:
- programming of the unit as master of a system of machines in Multilogic network
- entering of the parameters necessary for connection with the individual slave units
- installation in the electrical control panel of a network switch to allow the units to be connected in a LAN network.
- the supply of 2 temperature probes to be positioned on the delivery and return manifold for system thermoregulation (supplied with the system installation and wiring by the customer);
- the supply of two pressure transducers (supplied with the system installation and wiring by the customer) to be installed near the system terminal that is affected by the highest head losses in the line or in any case in a position where it is possible to measure an adequate pressure value.
- The option also includes the supply of a bypass valve controlled by a 0-10 V signal, which must be selected in function of the system capacity. Please refer to the VBx options for correct selection.

The connection between the master unit and the slave units made with a CAT cable. 5E/UTP (prepared by the customer) with RJ45 connectors. Maximum cable length 100m.

For further details, please refer to the controller manual.

VBx VFPP bypass valve for HYZER E

The option is supplied with the bypass valve, which is selected according to the system capacity.


This option must be selected with either the "HYZER E VFPP function for Master unit to manage up to 2 Slave units" or "HYZER E VFPP function for Master unit to manage up to 6 Slave units".

	System capacity range**	Quantity	Diameter	Qmax**
	kW	-	in	m³/h
S_A	<240	1	2 1/2"	41.3
S_B	240÷335	1	3"	57.6
s_c	335÷570	1	4"	98
S_D	570÷850	1	5"	146.2
S_E	850÷1250	1	6"	215
S_F	1250÷1700	2	2 x 5"	2 x 146.2
S_G	1700÷2500	2	2 x 6"	2 x 215

^{**} values based on a 5 °C temperature difference between the delivery and the return temperature

HSx HYZER E VPS function

The HYZER E VPS function combines the Multilogic function, which is used to manage multi-machine systems, with the FLOWZER VPS control for variable flow systems.

It is obligatory for the option to be combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit.

The unit must include the advanced Bluethink controller, just one heat exchanger on the user side and a minimum capacity step of 25% or less.

Units operate according to the Master/Slave logic that is typical of a Multilogic system. For additional details, please refer to the FMx option.

VPS control requires the installation on the machine of a differential transducer at the ends of the user-side heat exchanger in order to keep the flow rate in the system within a specific min. value allowed.

For additional details on the FLOWZER VPS logic, please refer to the dedicated FVPS option.

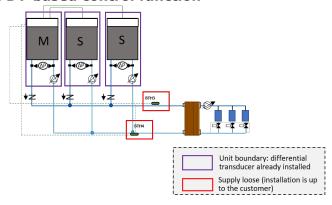
The networked units may be of different types, and the same observations as for the Multilogic option apply:

- if there are both chiller units and heat pumps in the network, the Master unit must obligatorily be one of the HP units;
- if there are both free-cooling and non free-cooling units in the network, the Master unit must obligatorily be one of the free-cooling units.

The HYZER E function requested with the unit can be:

- HSO: HYZER E VPS function for Slave units;
- HS2: HYZER E VPS function for the Master unit in order to manage up to 2 Slave units;
- **HS6:** HYZER E VPS function for the Master unit in order to manage up to 6 Slave units.

If you need to connect more than 6 slaves (up to 31), you can ask for a quotation from our sales department.


For the slave units, the accessory requires:

- programming of the unit as slave of a system of machines in Multilogic network For the master units, the accessory requires:
- programming of the unit as master of a system of machines in Multilogic network
- entering of the parameters necessary for connection with the individual slave units
- installation in the electrical control panel of a network switch to allow the units to be connected in a LAN network.
- the supply of 2 temperature probes to be installed on the delivery manifold and on the bypass branch, which are typical of VPS control (supplied with the system installation and wiring by the customer).

The connection between the master unit and the slave units made with a CAT cable. 5E/UTP (prepared by the customer) with RJ45 connectors. Maximum cable length 100m.

For further details, please refer to the controller manual.

HDx HYZER E VPS with DT-based control function

The HYZER E VPS with TD-based control function combines the Multilogic function, which is used to manage multi-machine systems, with the FLOWZER VPS with DT-based control control for variable flow systems.

It is obligatory for the option to be combined with the Flowzer VP (inverter) and with one of the hydraulic modules that can be selected for the unit.

The unit must include the advanced Bluethink controller, just one heat exchanger on the user side and a minimum capacity step of 25% or less.

Units operate according to the Master/Slave logic that is typical of a Multilogic system. For additional details, please refer to the FMx option.

VPS with DT-based control control requires the installation on the machine of a differential transducer at the ends of the user-side heat exchanger in order to keep the flow rate in the system within a specific min. value allowed.

For additional details on the FLOWZER VPS with TD-based control logic, please refer to the dedicated FVPS with DT-based control option.

The networked units may be of different types, and the same observations as for the Multilogic option apply:

- if there are both chiller units and heat pumps in the network, the Master unit must obligatorily be one of the HP units;
- if there are both free-cooling and non free-cooling units in the network, the Master unit must obligatorily be one of the free-cooling units.

The HYZER E function requested with the unit can be:

- HDO: HYZER E VPS with TD-based control function for Slave units;
- **HD2:** HYZER E VPS with TD-based control function for the Master unit in order to manage up to 2 Slave units;
- **HD6:** HYZER E VPS with TD-based control function for the Master unit in order to manage up to 6 Slave units.

If you need to connect more than 6 slaves (up to 31), you can ask for a quotation from our sales department.

For the slave units, the accessory requires:

- programming of the unit as slave of a system of machines in Multilogic network For the master units, the accessory requires:
- programming of the unit as master of a system of machines in Multilogic network
- entering of the parameters necessary for connection with the individual slave units
- installation in the electrical control panel of a network switch to allow the units to be connected in a LAN network.

The connection between the master unit and the slave units made with a CAT cable. 5E/UTP (prepared by the customer) with RJ45 connectors. Maximum cable length 100m.

For further details, please refer to the controller manual.

PVX Variable flow setup for HYZER X

The dedicated HYZER X controller is designed to manage the different units, devices and components that make up a hydronic system.

Systems featuring this controller require that the PVX option be installed at the ends of the user-side heat exchanger of a differential pressure transducer so that the machine is set up for variable flow rate control.

This option is mandatory in all units making up the system.

For additional information on the product HYZER X, please refer to the specific technical catalogue.

VIX Shut-off valves for systems with external pumps for HYZER X

Systems featuring the HYZER X controller enable the selection of the shut-off valve used in systems that have an external pumping unit.

The option is always supplied separately from the unit and is for installation by the customer.

FLMX User-side flow meter for HYZER X

Systems featuring the HYZER X controller enable the selection of the flow meter option to calculate the flow rate and the performances of the units.

The option is supplied with the system for installation on the user side (installation by customer).

TECHNICAL SPECIFICATIONS

ZETA REV HEI FC

			3.1	6.2	8.3
Cooling (A30°C; EG30% 15/10°C; 90H	z)				
Refrigeration capacity	(1)	kW	35	65	95
Total absorbed power	(1)	kW	10	18	27
EER	(1)		3,68	3,52	3,54
ESEER			4,69	4,47	4,47
Free-Cooling (A5°C; EG30% 15/x°C)					
Refrigeration capacity	(2)	kW	31,2	45,3	69,7
Amount of free cooling	(2)		88%	70%	74%
TFT - Total Free-cooling Temperature		°C	3,4	0,2	1,3
Compressors					
Compressors/Circuits		nº/nº	1/1	2/1	3/1
Capacity modulation range	(6)	%	33% / 117%	17% / 108%	11% / 106%
Refrigerant charge (MCHX)		kg	3	5	9
Refrigerant charge (CuAl)		kg	5,5	10	17
Fans		•			
Diameter		mm	630	630	630
Quantity		n°	2	2	3
Total air flow for chiller		m³/h	18.000	19.000	28.000
User-side heat exchanger					
Quantity		n°	1	1	1
Water flow rate	(1)	m³/h	6,8	12,5	18,2
Total load losses with FC OFF		kPa	67	73	85
Total load losses with FC ON		kPa	74	91	99
Total internal volume	(3)	1	30	50	70
Noise levels	***************************************	•			
Sound power lev.	(4)	dB(A)	84	85	86
Sound pressure lev.	(5)	dB(A)	52	54	54
Sound power lev. LN vers.	(4)	dB(A)	82	83	84
Sound pressure lev. LN vers.	(5)	dB(A)	50	52	52
Dimensions and weights**	,	•			
Length		mm	2.590	3.253	4.405
Depth		mm	1.337	1.337	1.437
Height		mm	1498	1799	1799
Operating weight of basic version		kg	803	936	1.210

(MCHX: unit with microchannel coils; CuAl: unit with copper/aluminium tube/fin coils)

- (1) External air temperature 30°C; evaporator inlet/outlet water temperature 15/10°C; 90Hz
- (2) External air temperature 5°C; evaporator inlet/outlet water temperature 15/x°C
- (3) Volume of water contained in the unit when it is working in free cooling mode. If present, the volume contained in the tank should also be considered.
- (4) Unit operating at nominal operating capacity, without any accessories, with external air temperature of 30°C and user-side heat exchanger water inlet-outlet temperature of 15-10°C. Binding values. Values obtained from measures taken according to standard ISO 3744.
- (5) Values obtained from the sound power level (in known condition 4), related to a distance of 10m from the unit in free field with directivity factor Q=2. Non-binding values.
- (6) Approximate value. The minimum capacity reached by the unit depends on the operating conditions. The value shown may not be suitable for calculating the minimum volume of water: to do this, consult the "Minimum water content in the system" section.
- ** Basic CH unit without included accessories

ZETA REV HEI FC /NG

			3.1	6.2	8.3
Cooling (A30°C; EG30% 15/10°C; 90H	z)				
Refrigeration capacity	(1)	kW	36	67	96
Total absorbed power	(1)	kW	10	19	27
EER	(1)		3,76	3,60	3,56
ESEER			4,69	4,47	4,47
Free-Cooling (A5°C; EG30% 15/x°C)					
Refrigeration capacity	(2)	kW	22	32	49
Amount of free cooling	(2)		62%	47%	51%
TFT - Total Free-cooling Temperature		°C	0,68	-2,92	-1,83
Compressors					
Compressors/Circuits		nº/nº	1/1	2/1	3/1
Capacity modulation range	(6)	%	33% / 117%	17% / 108%	11% / 106%
Refrigerant charge (MCHX)		kg	3	5	9
Refrigerant charge (CuAl)		kg	5,5	10	17
Fans					
Diameter		mm	630	630	630
Quantity		n°	2	2	3
Total air flow for chiller		m³/h	18.000	19.000	28.000
User-side heat exchanger					
Quantity		n°	1	1	1
Water flow rate	(1)	m³/h	6,3	11,7	16,6
Total head losses		kPa	60	68	92
Total internal volume	(3)	I	30	50	70
Noise levels					
Sound power lev.	(4)	dB(A)	84	85	86
Sound pressure lev.	(5)	dB(A)	52	54	54
Sound power lev. LN vers.	(4)	dB(A)	82	83	84
Sound pressure lev. LN vers.	(5)	dB(A)	50	52	52
Dimensions and weights**					
Length		mm	2.590	3.253	4.405
Depth		mm	1.337	1.337	1.437
Height		mm	1498	1799	1799
Operating weight of basic version		kg	803	936	1.210

(MCHX: unit with microchannel coils; CuAI: unit with copper/aluminium tube/fin coils)

- (1) External air temperature 30°C; evaporator inlet/outlet water temperature 15/10°C; 90Hz
- (2) External air temperature 5°C; evaporator inlet/outlet water temperature 15/x°C
- (3) Volume of water contained in the unit when it is working in free cooling mode. If present, the volume contained in the tank should also be considered.
- (4) Unit operating at nominal operating capacity, without any accessories, with external air temperature of 30°C and user-side heat exchanger water inlet-outlet temperature of 15-10°C. Binding values. Values obtained from measures taken according to standard ISO 3744.
- (5) Values obtained from the sound power level (in known condition 4), related to a distance of 10m from the unit in free field with directivity factor Q=2. Non-binding values.
- (6) Approximate value. The minimum capacity reached by the unit depends on the operating conditions. The value shown may not be suitable for calculating the minimum volume of water: to do this, consult the "Minimum water content in the system" section.
- ** Basic CH unit without included accessories

ECODESIGN

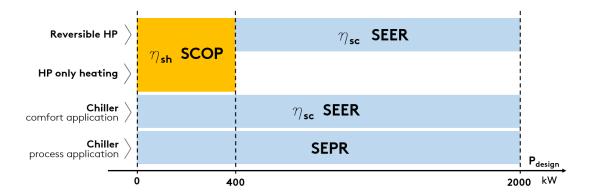
INTRODUCTION

The Ecodesign/ErP Directive (2009/125/EC) lays down new standards for more efficient energy use.

The Directive contains various regulations; as regards chiller products and heat pumps, the regulations of interest are the following:

- Regulation 2013/813, for small heat pumps (Pdesign ≤ 400 kW)
- Regulation 2016/2281, for chillers and heat pumps with Pdesign > 400 kW
- Regulation 2013/811, for heat pumps with Pdesign ≤ 70 kW.

The last-mentioned regulation (2013/811) regards the labelling (Ecolabel certification) of small heat pumps.


The other two regulations (2013/813 and 2016/2281) set seasonal efficiency targets that the products must comply with to be sold and installed in the European Union (essential requirement for CE marking).

These efficiency limits are defined through ratios, which are respectively:

- ηsh (SCOP), with reference to regulation 2013/813
- nsc (SEER) for comfort applications and SEPR for process applications, with reference to regulation 2016/2281.

As regards regulation 2016/2281, with effect from 1st January 2021, the required minimum efficiency limit will be raised (Tier 2) from the current threshold (Tier 1).

The figure below schematically illustrates the correspondence between product and reference energy ratio.

Some notes and clarifications:

For comfort applications, regulation 2016/2281 sets the nsc (SEER) ratio in two different operating conditions:

- SEER calculated with machine inlet/outlet water temperature of 12/7°C (low temperature application),
- SEER calculated with machine inlet/outlet water temperature of 23/18°C (medium temperature application).

The minimum efficiency requirement is the same, but can be met at condition 12/7°C or at condition 23/18°C, depending on the application envisaged for the machine.

Regulation 2013/813 distinguishes two different types: at low temperature and at medium temperature.

The following refer to the application at low temperature: (low temperature application) all heat pumps whose maximum delivery temperature for heating purposes is lower than 52°C with source at temperature of -7°C and -8°C wet bulb (air-water unit) or inlet 10°C (water-water unit), at the reference design conditions for an average climate. For these, the efficiency ratio is "low temperature application" (outlet water temperature 35°C).

For all the other heat pumps, the efficiency ratio is related to "medium temperature application" (outlet water temperature 55°C).

The ratios must be calculated according to the reference European heating season in average climatic conditions.

The minimum efficiency requirements set by the regulations are indicated below.

REGULATION 2016/2281, comfort application

	TVDE OF LINIT	MINIMUM REQUIREMENT								
TYPE OF UNIT		Tie	r 1	Tier 2 (2021)						
SOURCE	Pdesign	ηsc [%]	SEER	ηsc [%]	SEER					
air	< 400kW	149	3,8	161	4,1					
air	≥ 400kW	161	4,1	179	4,55					
water	< 400kW	196	4,975	200	5,075					
water	≥ 400kW and < 1500kW	227	5,75	252	6,375					
water	≥ 1500kW	245	6,2	272	6,875					

REGULATION 2016/2281, process application

	TYPE OF UNIT	MINIMUM REQUIREMENT						
	TYPE OF UNIT	Tier 1	Tier 2 (2021)					
SOURCE	Pdesign	SEPR	SEPR					
air	< 400kW	4,5	5					
air	≥ 400kW	5	5,5					
water	< 400kW	6,5	7					
water	≥ 400kW and < 1500kW	7,5	8					
water	≥ 1500kW	8	8,5					

REGULATION 2013/813

SOURCE	ADDUCATION	MINIMUM REQUIREMENT				
SOURCE	APPLICATION	η sh [%]	SCOP			
air	low temperature application	125	3,2			
water	low temperature application	125	3,325			
air	medium temperature application	110	2,825			
water	medium temperature application	110	2,95			

The conformity of the product must be checked according to the type of application, whether comfort or process, and at the required outlet water temperature.

The two schematic tables below, respectively for comfort application and for process application, indicate the reference of the required conformity according to the type of product and the set point temperature (reference to regulations 2016/2281 and 2013/813).

Important note: for mixed comfort and process applications, the reference application for conformity is the comfort application.

COMFORT APPLICATION

PRODUCT	OUTLET WATER TEM- PERATURE	COMPLIANCE INDEX	REGULATION
Chiller	< 18°C	SEER/ηsc low temperature application	2016/2281
	≥ 18°C	SEER/ŋsc medium temperature application	2016/2281
Heat pumps (reversible and only heating) Pdesign≤400kW		SCOP/ηsh	2013/813
Reversible heat pumps Pdesign>400kW	< 18°C	SEER/ŋsc low temperature application	2016/2281
	≥ 18°C	SEER/ŋsc medium temperature application	2016/2281
Heat pumps only heating Pdesign>400kW		-	-

^{- =} exemption from Ecodesign

PROCESS APPLICATION

PRODUCT	OUTLET WATER TEM- PERATURE	COMPLIANCE INDEX	REGULATION
Chiller	≥ +2°C , ≤ 12°C	SEPR	2016/2281
	> 12°C	-	-
	> -8°C , < +2°C	-	-

^{- =} exemption from Ecodesign

Some specifications and notes follow.

Partly completed machinery

The term partly completed machinery refers to all units without a user-side or source-side heat exchanger, and therefore to all LC, LE, LC/HP and LE/HP versions. Since these are "non-complete" machines, conformity with Ecodesign depends on combination with the remote heat exchanger.

All the partly completed machinery is CE marked and accompanied by a declaration of conformity. Installation in European Union countries is therefore allowed; correct selection and installation of the remote heat exchanger must be ensured, in accordance with the above cases.

EC fans:

The only option that positively affects the performance of the unit, by increasing its seasonal energy efficiency ratio, is the VEC accessory.

A unit equipped with EC fans has a higher SEER (nsc) than the configuration with standard fans.

GAMMA ZETA REV HEI FC

As specifically regards the ZETA REV HEi FC range, the regulations of interest for the various units in various configurations are indicated below.

Zeta Rev HEi FC Zeta Rev HEi FC /NG:

• chiller version: regulation 2016/2281

The tables below give information on the conformity of the units and the seasonal energy performance ratios with regard to the reference regulation.

ZETA REV HEI FC - ZETA REV HEI FC NG

			3.1	6.2	8.3
REGULATION 2016/2281					
Pdesign	(1)	kW	35	65	95
Compliance 12/7					
Compliance	(1)		Y	Υ	Y
ηsc	(1)	%	158,4	158,2	155,4
SEER	(1)		4,04	4,03	3,96
Compliance Tier 2 (2021)	(1)		N	N	N
Compliance 12/7 unit with EC fans					
Compliance	(1)		Y	Υ	Y
ηsc	(1)	%	171,7	169,7	169,0
SEER	(1)		4,37	4,32	4,3
Compliance Tier 2 (2021)	(1)		Y	Υ	Υ
Compliance 23/18					
Compliance	(2)		Y	Υ	Υ
ηςς	(2)	%	-	-	-
SEER	(2)		-	-	-
Compliance SEPR					
Compliance	(3)		Y	Υ	Y
SEPR	(3)		6,41	5,61	5,61

 ${\sf Y}={\sf unit}$ in compliance with Ecodesign at the indicated condition.

- (1) User-side heat exchanger water inlet/outlet temperature 12/7°C (low temperature application), with reference to regulation 2016/2281 and standard EN 14825.
- (2) User-side heat exchanger water inlet/outlet temperature 23/18°C (medium temperature application), with reference to regulation 2016/2281 and standard EN 14825.
- (3) User-side heat exchanger water inlet/outlet temperature 12/7°C, with reference to regulation 2016/2281 and norm EN 14825.

ELECTRICAL SPECIFICATIONS

ZETA REV HEI FC - ZETA REV HEI FC/NG

			3.1	3.1 6.2			
General electrical specifications							
Max. absorbed power (FLI)	(1)	kW	16	28	40		
Max. absorbed current (FLA)	(1)	Α	29	50	75		
Nominal current (Inom)	(2)	Α	18	36	54		
cosφ standard unit	(2)		1	1	1		
Nominal current with power factor correction (Inom)	(2)	А		34	49		
cosφ unit with power factor correction	(2)			0,96	0,95		
Maximum inrush current (MIC)	(3)	Α	7,28	150,28	174,48		
Power supply				400V / 3ph+N / 50Hz			
Power supply for auxiliary circuits				230V-24V / 1ph / 50 Hz			
Suggested line section	(5)	mm²	4G6	4G16	4G25		
Suggested line protection	(6)		CH14gG 40A	NH00gG 63A	NH00gG 100A		
Electrical specifications for fans							
Rated power of standard fan		n° x kW	2 x 0,6	2 x 0,6	3 x 0,6		
Rated current of standard fan		n° x A	2 x 2,6	2 x 2,6	3 x 2,6		
Rated power of EC fan		n° x kW	2 x 0,8	2 x 0,8	3 x 0,8		
Rated current of EC fan		n° x A	2 x 1,4	2 x 1,4	3 x 1,4		
Rated power of oversize EC fan		n° x kW	2 x 1,0	2 x 1,0	3 x 1,0		
Rated current of oversized EC fan		n° x A	2 x 1,6	2 x 1,6	3 x 1,6		

- (1) Data regarding the unit without accessories working in maximum power absorption conditions
- (2) Datum related to the unit without accessories working in standard conditions (A35°C; W12-7°C)
- (3) Maximum effective RMS value of the current when the last compressor starts (FLA of the entire unit FLA of the largest compressor + LRA of the largest compressor)
- (4) Maximum effective RMS value of the current when the last compressor starts (FLA of the entire unit FLA of the largest compressor + 0.6 x LRA of the largest compressor)
- (5) These values are determined for cables with operating temperature of 40°C, EPR insulation and a line with a maximum length of 50m. The line section must be determined by a qualified technician based on the protection devices, the length of the line, the type of cable used and the type of installation.
- (6) The correct line protection part must be determined by a qualified technician based on the length of the line, the type of cable used and the type of installation.

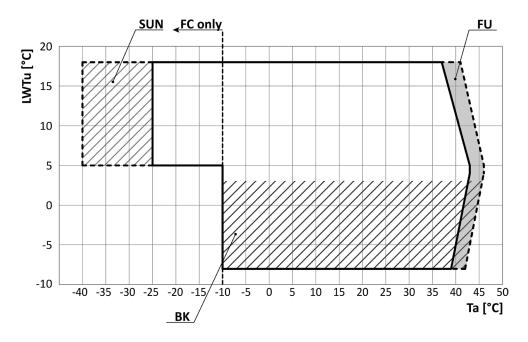
HYDRAULIC MODULES

Model	Rated power	Rated power Rated current Qmin				
	kW	A	m³/h	m³/h		
P1	0,9	2,4	3,6	9,6		
P2	1,9	4,2	7,0	18,0		
Р3	3,0	6,1	12,0	42,0		

USER-SIDE EXCHANGER FLOW RATE FIELDS

The units are sized and optimized for the following nominal conditions: external air 30°C, inlet-outlet of the user-side exchanger 15/10°C.

The units can work at design conditions different from nominal conditions, provided that:


- the design condition falls within the operating limits specified below
- the flow rate at design conditions (that is, of the specific application) must always come within the allowed flow rate ranges specified below. If the design conditions require a water flow rate that does not come within the allowed operating range, you must contact our sales department that will identify the most suitable solution for the specific application.

ZETA REV HEI FC - ZETA REV HEI FC/NG

	Qmin	Qmax
	m³/h	m³/h
3.1	3,4	10,2
6.2	6,3	18,8
8.3	9,1	27,3

OPERATING LIMITS

COOLING

Ta: external air temperature

LWTu: water outlet temperature from the user-side heat exchanger

FU: in the indicated area, the control could actuate a forced capacity reduction of the compressors so as to prevent tripping of

the safety devices

FC only: in the area indicated by the arrow, the switching on of the compressors is disabled and therefore the unit can work only in

free cooling mode

SUN: to work in the indicated area, there must be no wind and the unit must be equipped with accessory "SUN Heaters for opera-

tion with air below -25°C". In this area, operation of the unit is guaranteed only by AC fans

BK: For LWTu below +3°C, it is mandatory to fit the "Brine Kit" accessory

For LWTu below $+5^{\circ}$ C, it is compulsory to use suitable percentages of antifreeze additives (glycols) to prevent ice formation in the exchanger.

The inlet and outlet temperatures of the user-side exchanger must be given on ordering to allow correct setting of the alarm parameters and verification of the sizing of the expansion valve.

The cooling set point can then be changed by the customer in an interval that, compared to the set point given on ordering, ranges from -1K up to the maximum temperature allowed by the above-stated operating limits.

The unit will be optimized to work at the set point temperatures given on ordering. For different set points, the cooling capacity provided and the level of efficiency of the machine could decrease and move away from these conditions.

NOISE LEVELS

ZETA REV HEI FC - ZETA REV HEI FC/NG

	Octave bands [dB]															To	tal	
	63 Hz		63 Hz 125 Hz		250) Hz	500) Hz	100	0 Hz	200	0 Hz	400	0 Hz	800	0 Hz	[dB	(A)]
	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw_ tot	Lp_ tot
3.1	81	49	77	46	74	43	77	46	78	47	78	47	76	45	71	39	84	53
6.2	82	50	78	46	76	44	78	46	79	47	79	47	77	45	72	40	85	53
8.3	83	51	80	48	77	45	79	47	80	48	80	48	79	47	73	41	86	54

ZETA REV HEI FC /LN - ZETA REV HEI FC/NG /LN

	Octave bands [dB]										Total							
	63 Hz		63 Hz 125 Hz		250 Hz 500 Hz		1000 Hz 2000		2000 Hz 4000		000 Hz 8000 Hz		0 Hz	[dB(A)]				
	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw	Lp	Lw_ tot	Lp_ tot
3.1	79	47	75	44	72	41	75	44	76	45	76	45	74	43	69	37	82	50
6.2	80	48	76	44	74	42	76	44	77	45	77	45	76	44	70	38	83	51
8.3	81	49	78	46	75	43	77	45	78	46	78	46	77	45	71	39	84	52

Unit operating at nominal operating capacity, with no options of any kind, with external air temperature of 30° C and user-side heat exchanger water inlet/outlet temperature of $15/10^{\circ}$ C.

Lw: sound power levels.

Lw_tot is the only binding value.

Values obtained from measures taken according to standard ISO 3744.

Lp: sound pressure levels calculated from sound power levels, related to distance of 10 m from the unit in free field with directivity factor Q=2. Non-binding values.

The acoustic data are related to standard conditions in referable and reproducible operating conditions. All data with the exception of Lw_tot are provided for illustrative purposes only and can not be used for forecasting purposes or for the verification of binding limits.

With special reference to noise emissions, the Manufacturer takes liability for their conformity, limited to the declared Lw_tot value. Any and all other Manufacturer's liability for the impact of such emissions in relation to the location of the machine and other conditions related to machine installation is excluded. The environment and the installation conditions, as well as the operating modes, can alter the sound emissions. Any assessment concerning these conditions falls within the area of competence of the plant designer and/ or the fitter.

INSTALLATION ADVICE

The units described in this document are, by nature, strongly affected by the characteristics of the system, the working conditions and the installation site.

Remember that the unit must be installed by a qualified and skilled technician, and in compliance with the national legislation in force in the destination country.

The installation must be done in such a way that it will be possible to carry out all routine and non-routine maintenance operations.

Before starting any work, you must carefully read the "Installation, operation and maintenance manual" of the machine and do the necessary safety checks to prevent any malfunctioning or hazards.

We give some advice below that will allow you to increase the efficiency and reliability of the unit and therefore of the system into which it is inserted.

Water characteristics

To preserve the life of the exchangers, the water is required to comply with some quality parameters and it is therefore necessary to make sure its values fall within the ranges indicated in the following table:

Total hardness	2,0 ÷ 6,0 °f
Langelier index	- 0,4 ÷ 0,4
pH	7,5 ÷ 8,5
Electrical conductivity	10÷500 μS/cm
Organic elements	-
Hydrogen carbonate (HCO3-)	70 ÷ 300 ppm
Sulphates (SO42-)	< 50 ppm
Hydrogen carbonate / Sulphates (HCO3-/SO42-)	> 1
Chlorides (CI-)	< 50 ppm
Nitrates (NO3-)	< 50 ppm
Hydrogen sulphide (H2S)	< 0,05 ppm
Ammonia (NH3)	< 0,05 ppm
Sulphites (SO3), free chlorine (Cl2)	< 1 ppm
Carbon dioxide (CO2)	< 5 ppm
Metal cations	< 0,2 ppm
Manganese ions (Mn++)	< 0,2 ppm
Iron ions (Fe2+ , Fe3+)	< 0,2 ppm
Iron + Manganese	< 0,4 ppm
Phosphates (PO43-)	< 2 ppm
Oxygen	< 0,1 ppm

Installation of water filters on all the hydraulic circuits is obligatory.

The supply of the most suitable filters for the unit can be requested as accessory. In this case, the filters are supplied loose and must be installed by the customer following the instructions given in the installation, operation and maintenance manual.

Glycol mixtures

With temperatures below 5°C, it is mandatory to work with water and anti-freeze mixtures, and also change the safety devices (anti-freeze, etc.), which must be carried out by qualified authorised personnel or by the manufacturer.

						•				
Liquid outlet temperature or	°C	0	-5	-10	-15	-20	-25	-30	-35	-40
minimum ambient temperature										
Freezing point	°C	-5	-10	-15	-20	-25	-30	-35	-40	-45
Ethylene glycol	%	6	22	30	36	41	46	50	53	56
Propylene glycol	%	15	25	33	39	44	48	51	54	57

The quantity of antifreeze should be considered as % on weight

Minimum water content in the system

For correct operation of the unit, it is necessary to ensure a buffering on the system such as to comply with the minimum operating time considering the greater between the minimum OFF time and the minimum ON time. In short, these contribute to limiting the number of times the compressors are switched on per hour and to preventing undesired deviations from the set point of the delivered water temperature.

Larger amounts of water are in any case always preferable, because they allow a smaller number of starts and switch-offs of the compressors, less wear of them and an increase in the efficiency of the system as a consequence of a reduction in the number of transients.

The following experimental formula allows the minimum water volume of the system to be calculated:

$$V_{min} = \frac{P_{tot} \cdot 1.000}{N} \cdot \frac{300}{\Delta T \cdot \rho \cdot c_p} + P_{tot} \cdot 0.25$$

where

Vmin is the minimum water content of the system [I]

Ptot is the total cooling capacity of the machine [kW]

N: number of capacity reduction steps

ΔT: differential allowed on the water temperature. Unless otherwise specified, this value is considered to be 2.5K p: density of the heat-carrying fluid. Unless otherwise specified, the density of water is considered cp: specific heat of the heat-carrying fluid. Unless otherwise specified, the specific heat of water is considered Considering the use of water and grouping together some terms, the formula can be re-written as follows:

$$V_{min} = \frac{P_{tot}}{N} \cdot 17,2 + P_{tot} \cdot 0,25$$

N may take the following values:

- N=3 for units featuring one inverter-piloted compressor only; (model 3.1)
- N=6 for units with 2 compressors of which one is controlled by inverter (model 6.2)
- N=9 for units with 3 compressors of which one is controlled by inverter (model 8.3)

Installation site

To determine the best installation site for the unit and its orientation, you should pay attention to the following points:

- compliance with the clearance spaces indicated in the official dimensional drawing of the unit must be guaranteed so as to ensure accessibility for routine and non-routine maintenance operations
- you should consider the origin of the hydraulic pipes and their diameters because these affect the radiuses of curvature and therefore the spaces needed for installing them
- you should consider the position of the cable inlet on the electrical control panel of the unit as regards the origin of the power supply
- if the installation includes several units side by side, you should consider the position and dimensions of the manifolds of the user-side exchangers and of any recovery exchangers
- if the installation includes several units side by side, you should consider that the minimum distance between units is 3 metres
- you should avoid all obstructions that can limit air circulation to the source-side exchanger or that can cause recirculation between air supply and intake
- you should consider the orientation of the unit to limit, as far as possible, exposure of the source-side exchanger to solar radiation
- if the installation area is particularly windy, the orientation and positioning of the unit must be such as to avoid air recirculation on the coils. If necessary, we advise making windbreak barriers in order to prevent malfunctioning.

Once the best position for the unit has been identified, you must check that the support slab has the following characteristics:

- its dimensions must be proportionate to those of the unit: if possible, longer and wider than the unit by at least 30 cm and 15/20cm higher than the surrounding surface
- it must be able to bear at least 4 times the operating weight of the unit
- it must allow level installation of the unit: although the unit is installed on a horizontal base, make slopes in the support surface to convey rain water or defrost water to drains, wells or in any case to places where it cannot generate an accident hazard due to ice formation. All heat pump version units are equipped with discharge manifolds for the condensed water; these can be manifolded to facilitate condensate discharge.

The units are designed and built to reduce to a minimum the level of vibration transmitted to the ground, but it is in any case advisable to use rubber or spring anti-vibration mounts, which are available as accessory and should be requested when ordering.

The anti-vibration mounts must be fixed on before positioning the unit on the ground.

In the event of installation on roofs or intermediate floors, the pipes must be isolated from the walls and ceilings.

It is advisable to avoid installation in cramped places, to prevent reverberations, reflections, resonances and acoustic interactions with elements outside the unit.

It is essential that any work done to soundproof the unit does not affect its correct installation or correct operation and, in particular, does not reduce the air flow rate to the source-side exchanger.

Installations that require the use of treated coils

If the unit has to be installed in an environment with a particularly aggressive atmosphere, coils with special treatments are available as options.

- e-coated microchannel coils for condensing section
- coils with anti-corrosion treatment for condensing section (option available only for Cu/Al coil)
- Coil treated with anti-corrosion paints for freecooling section

A description of the individual accessories is available in the "Description of accessories" section.

The type of coil treatment should be chosen with regard to the environment in which the unit is to be installed, through observation of other structures and machinery with exposed metal surfaces present in the destination environment.

The cross observation criterion is the most valid method of selection currently available without having to carry out preliminary tests or measurements with instruments. The identified reference environments are:

- · coastal/marine
- industrial
- · urban with a high housing density
- rural

Please note that in cases where different conditions co-exist, even for short periods, the choice must be suitable for preserving the exchanger in the harsher environmental conditions and not in conditions between the worst and best situation.

Particular attention must be given in cases where an environment that is not particularly aggressive becomes aggressive as a consequence of a concomitant cause, for example, the presence of a flue outlet or an extraction fan.

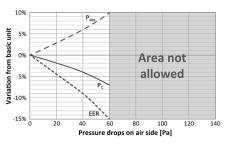
We strongly suggest choosing one of the treatment options if at least one of the points listed below is verified:

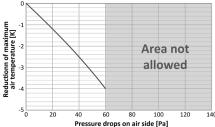
- there are obvious signs of corrosion of the exposed metal surfaces in the installation area
- the prevailing winds come from the sea towards the unit
- the environment is industrial with a significant concentration of pollutants
- · the environment is urban with a high population density
- the environment is rural with the presence of organic discharges and effluents

In particular, for installations near the coast, the following instructions apply:

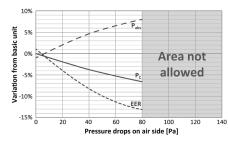
- For units with a microchannel coil for the condensing section to be installed between 1 and 20 km from the coast, the use of the option "E-coated microchannel coils" and the option "Coil treated with anti-corrosion paints" for freecooling section is strongly recommended.
- For units with Cu/Al coils to be installed between 1 and 20 km from the coast, the use of the option "Coil treated with anti-corrosion paints" for both the condensing and the freecooling sections is strongly recommended.
- for distances within one kilometer from the coast it is strongly recommended to use the "Battery treated with anti-corrosion paints" accessory both for the condensing section and for the freecooling section

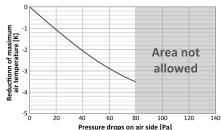
To protect the exchangers from corrosion and ensure optimal operation of the unit, we advise following the recommendations given in the user, installation and maintenance manual for cleaning the coils.

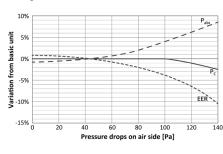

Aeraulic head losses and options available for the ventilating section

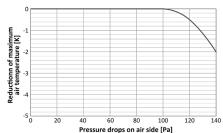

With the exception of units for which oversize fans are required, as standard, the units are designed considering that, at the nominal air flow rate, the fans work with null available pressure.

If there are obstacles to free air flow, you should consider the additional aeraulic head losses that will cause a reduction of the air flow rate and a consequent deterioration of performance.


The following diagrams show the trend of cooling capacity (PC), EER, total absorbed power (Pabs) and reduction of the maximum external air temperature in chiller operating mode, depending on the aeraulic head losses that the fans will have to overcome.


AC fans (Ø 630)

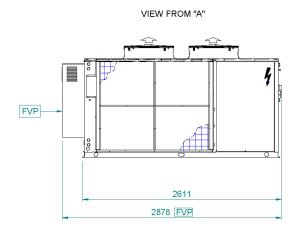


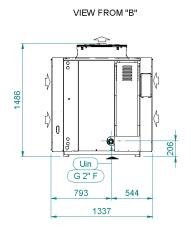

EC fans (Ø 630)

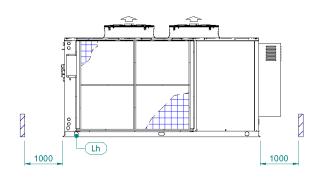
Oversize EC fans (Ø 630)

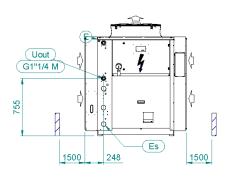
The indicated values are for the standard machine, without accessories, with AC fans and in any case in the absence of air recirculation.

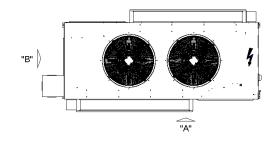
Example: supposing you expect there to be obstacles that will generate an estimated aeraulic head loss of 60Pa. In this case, there are 3 possibilities:

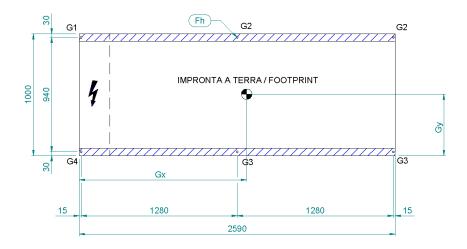

- use the unit with standard AC fans: compared to ideal conditions, the output power will be reduced by about 5.5%, the total absorbed power will increase by about 7.5%, the EER will be reduced by about 12.5% and the maximum allowed external air temperature for operation at 100% will be reduced by about 3.4K compared to the nominal limit
- use the unit with EC fans: compared to the unit with AC fans working in ideal conditions, the output power will be reduced by about 5%, the total absorbed power will increase by about 6.5%, the EER will be reduced by about 11.5% and the maximum allowed external air temperature for operation at 100% will be reduced by about 2.8K compared to the nominal limit
- use the unit with oversize EC fans: compared to the unit with AC fans working in ideal conditions, the output power of the unit will be unchanged, the total absorbed power will increase by about 1%, the EER will be reduced by about 2% and the maximum external air temperature will remain the one shown in the diagram of the operating limits.

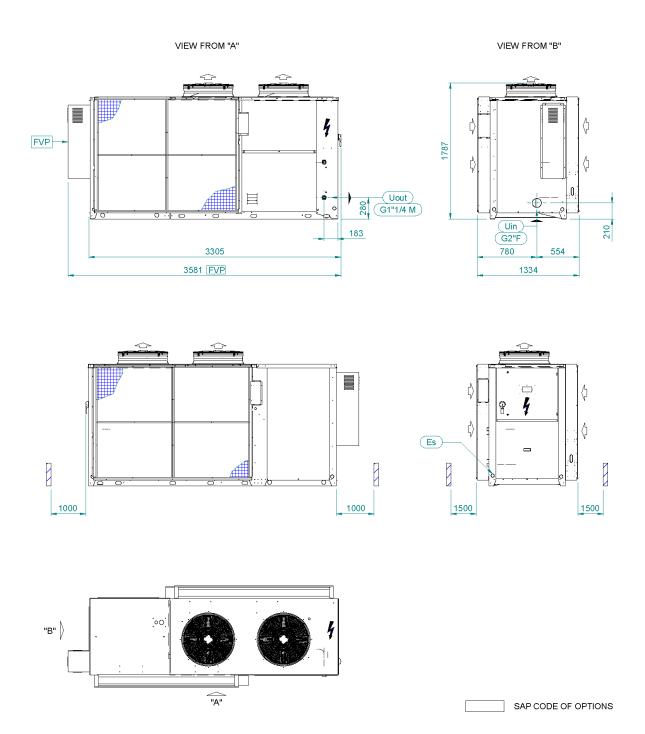

It is emphasized that, as indicated in the diagrams and based on the diameter and type of fan, for aeraulic head losses higher than 60 or 80Pa, only the use of oversize EC fan is allowed.

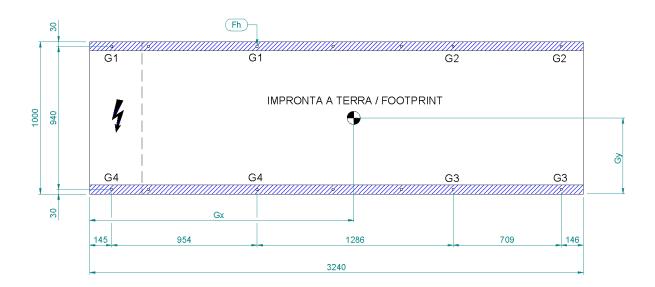

DIMENSIONAL DIAGRAMS


ZETA REV HEI FC 3.1

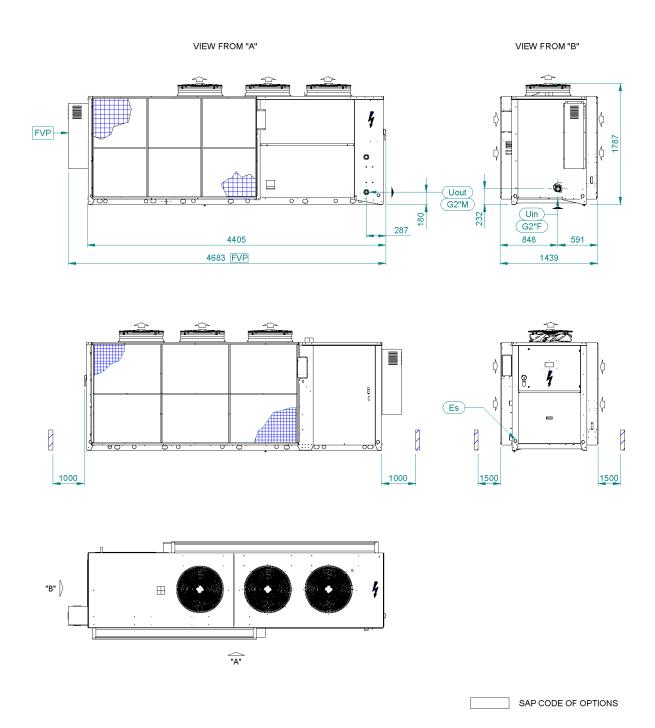

A4H198A

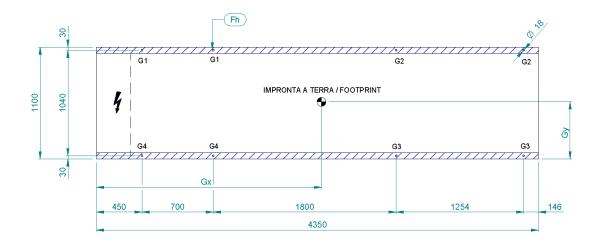






SAP CODE OF OPTIONS




MODEL	WEIGHT(kg)	OPERATING WEIGHT (kg)	G1 (kg)	G2 (kg)	G3 (kg)	G4 (kg)	Gx (mm)	Gy (mm)
3.1	733	803	205	132	94	146	1057	548
3.1 1P-2P	775	870	206	153	107	144	1104	556
3.1 1PS-2PS	858	1153	240	197	161	197	1142	545

MODE	L	WEIGHT(kg)	OPERATING WEIGHT (kg)	G1 (kg)	G2 (kg)	G3 (kg)	G4 (kg)	Gx (mm)	Gy (mm)
6.2		866	936	177	99	69	123	1330	558
6.2_1P-2	Р	901	996	175	115	83	125	1388	554
6.2_1PS-	2PS	985	1280	207	164	119	150	1442	561

MOD	EL	WEIGHT(kg)	OPERATING WEIGHT (kg)	G1 (kg)	G2 (kg)	G3 (kg)	G4 (kg)	Gx (mm)	Gy (mm)
8.3		1140	1210	207	149	105	144	1916	620
8.3_1P-	2P	1243	1338	199	187	137	146	2075	612
8.3_1PS	S-2PS	1323	1618	227	233	177	172	2101	614

Swegon Operations s.r.l. Via Valletta, 5 - 30010 Cantarana di Cona, (VE) Italy - T. +39 0426 921111 - F. +39 0426 302222 www.blueboxcooling.com - info@bluebox.it

